A citizen-centric view is key to channeling technological affordances into the development of future cities in which improvements are made with the quality of citizens’ life in mind. This paper proposes City 5.0 as a new citizen-centric design paradigm for future cities, in which cities can be seen as markets connecting service providers with citizens as consumers. City 5.0 is dedicated to eliminating restrictions that citizens face when utilizing city services. Our design paradigm focuses on smart consumption and extends the technology-centric concept of smart city with a stronger view on citizens’ roadblocks to service usage. Through a series of design workshops, we conceptualized the City 5.0 paradigm and formalized it in a semi-formal model. The applicability of the model is demonstrated using the case of a telemedical service offered by a Spanish public healthcare service provider. The usefulness of the model is validated by qualitative interviews with public organizations involved in the development of technology-based city solutions. Our contribution lies in the advancement of citizen-centric analysis and the development of city solutions for both academic and professional communities.
Background and objective Recently, Electronic Health Records (EHR) are increasingly being converted to Common Data Models (CDMs), a database schema designed to provide standardized vocabularies to facilitate collaborative observational research. To date, however, rare attempts exist to leverage CDM data for healthcare process mining, a technique to derive process-related knowledge (e.g., process model) from event logs. This paper presents a method to extract, construct, and analyze event logs from the Observational Medical Outcomes Partnership (OMOP) CDM for process mining and demonstrates CDM-based healthcare process mining with several real-life study cases while answering frequently posed questions in process mining, in the CDM environment. Methods We propose a method to extract, construct, and analyze event logs from the OMOP CDM for process types including inpatient, outpatient, emergency room processes, and patient journey. Using the proposed method, we extract the retrospective data of several surgical procedure cases (i.e., Total Laparoscopic Hysterectomy (TLH), Total Hip Replacement (THR), Coronary Bypass (CB), Transcatheter Aortic Valve Implantation (TAVI), Pancreaticoduodenectomy (PD)) from the CDM of a Korean tertiary hospital. Patient data are extracted for each of the operations and analyzed using several process mining techniques. Results Using process mining, the clinical pathways, outpatient process models, emergency room process models, and patient journeys are demonstrated using the extracted logs. The result shows CDM’s usability as a novel and valuable data source for healthcare process analysis, yet with a few considerations. We found that CDM should be complemented by different internal and external data sources to address the administrative and operational aspects of healthcare processes, particularly for outpatient and ER process analyses. Conclusion To the best of our knowledge, we are the first to exploit CDM for healthcare process mining. Specifically, we provide a step-by-step guidance by demonstrating process analysis from locating relevant CDM tables to visualizing results using process mining tools. The proposed method can be widely applicable across different institutions. This work can contribute to bringing a process mining perspective to the existing CDM users in the changing Hospital Information Systems (HIS) environment and also to facilitating CDM-based studies in the process mining research community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.