The dynamic regulation of DNA origami nanostructures is important for the fabrication of intelligent DNA nanodevices. Toehold-mediated strand displacement is a common regulation strategy, which utilizes trigger strands to assemble...
It is widely observed that life activities are regulated through conformational transitions of biological macromolecules, which inspires the construction of environmental responsive nanomachines in recent years. Here we present a thermal responsive DNA origami dimers system, whose conformations can be cyclically switched by thermal cycling. In our strategy, origami dimers are assembled at high temperatures and disassembled at low temperatures, which is different from the conventional strategy of breaking nanostructures using high temperatures. The advantage of this strategy is that the dimers system can be repeatedly operated without significant performance degradation, compared to traditional strategies such as conformational transitions via i-motif and G-quadruplexes, whose performance degrades with sample dilution due to repeated addition of trigger solutions. The cyclic conformational transitions of the dimers system are verified by fluorescence curves and AFM images. This research offered a new way to construct cyclic transformational nanodevices, such as reusable nanomedicine delivery systems or nanorobots with long service lifetimes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.