Stable and efficient guided waves are essential for information transmission and processing. Recently, topological valley-contrasting materials in condensed matter systems have been revealed as promising infrastructures for guiding classical waves, for they can provide broadband, non-dispersive and reflection-free electromagnetic/mechanical wave transport with a high degree of freedom. In this work, by designing and manufacturing miniaturized phononic crystals on a semi-infinite substrate, we experimentally realized a valley-locked edge transport for surface acoustic waves (SAWs). Critically, original one-dimensional edge transports could be extended to quasi-two-dimensional ones by doping SAW Dirac “semimetal” layers at the boundaries. We demonstrate that SAWs in the extended topological valley-locked edges are robust against bending and wavelength-scaled defects. Also, this mechanism is configurable and robust depending on the doping, offering various on-chip acoustic manipulation, e.g., SAW routing, focusing, splitting, and converging, all flexible and high-flow. This work may promote future hybrid phononic circuits for acoustic information processing, sensing, and manipulation.
This paper presents radio frequency (RF) microelectromechanical system (MEMS) filters with extremely high bandwidth widening capability. The proposed filtering topologies include hybrid configurations consisting of piezoelectric MEMS resonators and surface-mounted lumped elements. The MEMS resonators set the center frequency and provide electromechanical coupling to construct the filters, while the lumped-element-based matching networks help widen the bandwidth (BW) and enhance the out-of-band rejection. Aluminum nitride (AlN) S0 Lamb wave resonators are then applied to the proposed filtering topologies. AlN S0 first- and second-order wideband filters are studied and have shown prominent performance. Finally, the AlN S0 first-order wideband filter is experimentally implemented and characterized. The demonstrated first-order filter shows a large fractional bandwidth (FBW) of 5.6% (achieved with a resonator coupling of 0.94%) and a low insertion loss (IL) of 1.84 dB. The extracted bandwidth widening factor (BWF) is 6, which is approximately 12 times higher than those of the current ladder or lattice filtering topologies. This impressive bandwidth widening capability holds great potential for satisfying the stringent BW requirements of bands n77, n78, and n79 of 5G new radio (NR) and will overcome an outstanding technology hurdle in placing 5G NR into the marketplace.
No abstract
This work presents the laterally vibrating Lamb wave resonators (LVRs) based on a 30% aluminum scandium nitride (Al0.7Sc0.3N) thin film with three interdigited transducer pairs operating in the S0 mode. In order to reduce the anchor loss, perfect matched layer-based finite element analysis simulations are utilized to design and optimize the device. Thanks to the high quality AlScN using magnetron sputtering with a single alloy target, vertical etching profile, and designed device structure, 1- μm-thick Al0.7Sc0.3N-based LVRs with high performance are fabricated. The resonator equivalent electric parameters are extracted utilizing the modified Butterworth–Van Dyke model. The best Al0.7Sc0.3N LVR achieves an electromechanical coupling coefficient ( kt2) of 9.7% and a loaded quality factor ( Qr) of 1141.5 operating at approximately 305 MHz. The same resonator shows a motional quality factor ( Qm) of 1507.2, resulting in a high figure-of-merit ( FoM = kt2 · Qm) of 146.2. A 1.8 MHz tuning range is measured for an Al0.7Sc0.3N LVR by applying DC voltage in the range of −40 to 40 V due to the ferroelectric property of high Sc doping in Al0.7Sc0.3N. With the high FoM, Qr, Qm, and low motional resistance ( Rm), the Al0.7Sc0.3N-based LVRs show strong potential in applications of radio frequency communications and piezoelectric transducers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.