With the ubiquity of wearable devices, various behavioural biometrics have been exploited for continuous user authentication during daily activities. However, biometric authentication using complex hand behaviours have not been sufficiently investigated. This paper presents an implicit and continuous user authentication model based on hand-object manipulation behaviour, using a finger-and hand-mounted inertial measurement unit (IMU)-based system and state-of-the-art deep learning models. We employed three convolutional neural network (CNN)-based deep residual networks (ResNets) with multiple depths (i.e., 50, 101, and 152 layers) and two recurrent neural network (RNN)-based long short-term memory (LSTMs): simple and bidirectional. To increase ecological validity, data collection of hand-object manipulation behaviours was based on three different age groups and simple and complex daily object manipulation scenarios. As a result, both the ResNets and LSTMs models acceptably identified users’ hand behaviour patterns, with the best average accuracy of 96.31% and F1-score of 88.08%. Specifically, in the simple hand behaviour authentication scenarios, more layers in residual networks tended to show better performance without showing conventional degradation problems (the ResNet-152 > ResNet-101 > ResNet-50). In a complex hand behaviour scenario, the ResNet models outperformed user authentication compared to the LSTMs. The 152-layered ResNet and bidirectional LSTM showed an average false rejection rate of 8.34% and 16.67% and an equal error rate of 1.62% and 9.95%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.