It is challenging to control the catalyst activation and deactivation by removal and addition of only one central atom, as it is almost impossible to precisely abstract an atom from aconventional catalyst and analyze its catalysis.Here we report that the loss of one central atom in Au 25 (resulting in Au 24 ) enhances the catalytic activity in the oxidation of methane compared to the original Au 25 .M ore importantly,t he activity can be readily switched through shuttling the central atom into Au 24 and out of Au 25 .This work will serve as astarting point for design rules on howt oc ontrol catalytic performance of ac atalyst by an atom alteration.
A stable lean‐electrolyte operating lithium–sulfur (Li–S) battery based on a cathode of Li2S in situ electrocatalytically deposited from L2S8 catholyte onto a support of metallic molybdenum disulfide (1T‐MoS2) on carbon cloth (CC) is created. The 1T‐MoS2 significantly accelerates the conversion Li2S8 catholyte to Li2S, chemically adsorbs lithium polysulfide (LiPSs) from solution, and suppresses crossover of the LiPSs to the anode. These experimental findings are explained by density functional theory calculations that show that 1T‐MoS2 gives rise to strong adsorption of polysulfides on its surface and is electrocatalytic for the targeted reversible Li–S conversion reactions. The CC/1T‐MoS2 electrode in a Li–S battery delivers an initial capacity of 1238 mAh g−1, with a low capacity fade of only 0.051% per cycle over 500 cycles at 0.5 C. Even at a high sulfur loading (4.4 mg cm−2) and low electrolyte/S (E/S) ratio of 3.7 µL mg−1, the battery achieves an initial reversible capacity of 1176 mA h g−1 at 0.5 C, with 87% capacity retention after 160 cycles. The post 500 cycles Li metal opposing 1T‐MoS2 is substantially smoother than the Li opposing CC, with XPS supporting the role of 1T‐MoS2 in inhibiting LiPSs crossover.
Development of robust and highly active electrocatalysts for oxygen evolution reaction (OER) is of significance for next-generation renewable energy storage and conversion. Herein, for the first time, we report pyrite-type...
Rechargeable room temperature sodium–sulfur (RT Na–S) batteries are seriously limited by low sulfur utilization and sluggish electrochemical reaction activity of polysulfide intermediates. Herein, a 3D “branch-leaf” biomimetic design proposed for high performance Na–S batteries, where the leaves constructed from Co nanoparticles on carbon nanofibers (CNF) are fully to expose the active sites of Co. The CNF network acts as conductive “branches” to ensure adequate electron and electrolyte supply for the Co leaves. As an effective electrocatalytic battery system, the 3D “branch-leaf” conductive network with abundant active sites and voids can effectively trap polysulfides and provide plentiful electron/ions pathways for electrochemical reaction. DFT calculation reveals that the Co nanoparticles can induce the formation of a unique Co–S–Na molecular layer on the Co surface, which can enable a fast reduction reaction of the polysulfides. Therefore, the prepared “branch-leaf” CNF-L@Co/S electrode exhibits a high initial specific capacity of 1201 mAh g−1 at 0.1 C and superior rate performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.