In this paper, a 12.5-Gb/s optical transmitter is implemented using 0.13-μm CMOS technology. The optical transmitter that we constructed compensates temperature effects of VCSEL (Vertical cavity surface emitting laser) using auto-power control (APC) and auto-modulation control (AMC). An external monitoring photodiode (MPD) detects optical power and modulation. The proposed APC and AMC demonstrate 5~20-mA of bias-current control and 5~20-mA of modulation-current control, respectively. To enhance the bandwidth of the optical transmitter, an active feedback amplifier with negative capacitance compensation is exploited. The whole chip consumes only 140.4-mW of DC power at a single 1.8-V supply under the maximum modulation and bias currents, and occupies the area of 1280-μm by 330-μm excluding bonding pads.
This paper proposes a pulse-width modulation-based readout circuit for optical sensors which adopts adaptive frequency control technique to enhance input dynamic range of current sensing systems. The proposed readout circuit is designed and fabricated using a 65 nm CMOS process. The readout IC achieves 100 dB of dynamic range in current sensing system by adaptively controlling the frequency of operating clock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.