Autophagy has emerged as a powerful process in the response to cellular injury. The present study was designed to investigate signal transduction pathways in angiotensin II (Ang II)-induced autophagy. Rat vascular smooth muscle cells (VSMCs) were stimulated with different doses of Ang II (10−9–10−5 mol/L) for different time periods (6–72 h). Incubation with Ang II increased the production of reactive oxygen species (ROS), increased the LC3-II to LC3-I ratio, increased beclin-1 expression, and decreased SQSTM1/p62 expression in a dose- and time-dependent manner. In addition, Ang II increased autophagosome formation. Increased ROS production induced by Ang II was inhibited by Ang II type 1 receptor (AT1) blockers (Olmesartan and Candesartan, ARB), a NADPH Oxidase inhibitor (apocynin), and mitochondrial KATP channels inhibitor (5-hydroxydecanoate, 5HD). Ang II (10−7 mol/L, 48 h)-induced increase in the LC3-II to LC3-I ratio, the formation of autophagosomes, expression of beclin-1 and decrease in the expression of SQSTM1/p62 were also inhibited by pretreatment with 3-methyladenine or bafilomycin A1 (inhibitors of autophagy), olmesartan and candesartan (in dose-dependent manners), apocynin, 5HD, and siRNA Atg5. Our results indicate that Ang II increases autophagy levels via activation of AT1 receptor and NADPH oxidase. Mitochondrial KATP channels also play an important role in Ang II-induced autophagy. Our results may provide a new strategy for treatment of cardiovascular diseases with Ang II.
Although the medicinal mushroom Hericium erinaceus is used extensively in traditional Chinese medicine to treat chronic superficial gastritis, the underlining pharmaceutical mechanism is yet to be fully understood. In this study, minimum inhibitory concentration (MIC) values of extracts prepared from the fruiting bodies of 14 mushroom species (H. erinaceus, Ganoderma lucidum, Cordyceps militaris, Pleurotus eryngii, P. ostreatus, Agrocybe aegerita, Lentinus edodes, Agaricus brasiliensis, A. bisporus, Coprinus comatus, Grifola frondosa, Phellinus igniarius, Flammulina velutipes, and Hypsizygus marmoreus) were determined against Helicobacter pylori using laboratory strains of ATCC 43504 and SS1 as well as 9 clinical isolates via an in vitro microplate agar diffusion assay. Ethanol extracts (EEs) of 12 mushrooms inhibited the growth of H. pylori in vitro, with MIC values <3 mg/mL. EEs of H. erinaceus and G. lucidum also inhibited Staphylococcus aureus (MIC 7360;10 mg/mL) but had no effect on the growth of two Escherichia coli test strains (MIC >10 mg/mL). MIC values of ethyl acetate fractions (EAFs) of H. erinaceus against 9 clinical isolates of H. pylori ranged between 62.5 and 250 µg/mL. The bacteriostatic activity of EAFs was found to be concentration-dependant, and the half maximal inhibitory concentration and minimum bactericidal concentration values for H. pylori ATCC 43504 were 73.0 and 200 µg/mL, respectively. The direct inhibitory effect of EEs and EAFs of H. erinaceus against H. pylori could be another pharmaceutical mechanism of medicinal mushrooms-besides the immunomodulating effect of polysaccharides, suggested previously-in the treatment of H. pylori-associated gastrointestinal disorders. Further research to identify the active component(s) is currently undertaking in our laboratory.
Growing evidence suggests that hypertension is one of the leading causes of cardiovascular morbidity and mortality since uncontrolled high blood pressure increases the risk of myocardial infarction, aortic dissection, hemorrhagic stroke, and chronic kidney disease. Impaired vascular homeostasis plays a critical role in the development of hypertension-induced vascular remodeling. Abnormal behaviors of vascular cells are not only a pathological hallmark of hypertensive vascular remodeling, but also an important pathological basis for maintaining reduced vascular compliance in hypertension. Targeting vascular remodeling represents a novel therapeutic approach in hypertension and its cardiovascular complications. Phytochemicals are emerging as candidates with therapeutic effects on numerous pathologies, including hypertension. An increasing number of studies have found that curcumin, a polyphenolic compound derived from dietary spice turmeric, holds a broad spectrum of pharmacological actions, such as antiplatelet, anticancer, anti-inflammatory, antioxidant, and antiangiogenic effects. Curcumin has been shown to prevent or treat vascular remodeling in hypertensive rodents by modulating various signaling pathways. In the present review, we attempt to focus on the current findings and molecular mechanisms of curcumin in the treatment of hypertensive vascular remodeling. In particular, adverse and inconsistent effects of curcumin, as well as some favorable pharmacokinetics or pharmacodynamics profiles in arterial hypertension will be discussed. Moreover, the recent progress in the preparation of nano-curcumins and their therapeutic potential in hypertension will be briefly recapped. The future research directions and challenges of curcumin in hypertension-related vascular remodeling are also proposed. It is foreseeable that curcumin is likely to be a therapeutic agent for hypertension and vascular remodeling going forwards.
Growing evidence has shown that exposure to low ambient temperature poses a huge challenge to human health globally. Actually, cold stress is closely associated with a higher incidence of cardiovascular morbidity and mortality in winter or in cold regions. Cellular and molecular mechanisms underlying cardiovascular complications in response to cold exposure have yet to be fully clarified. Considering that cold exposure is an important risk of cardiovascular complications, it is necessary to clarify the molecular mechanism of cold stress-induced cardiovascular diseases and to develop effective intervention strategies. Hydrogen sulfide (H2S), nitric oxide (NO), and carbon monoxide (CO) are well-known gasotransmitters that are endogenously produced in many biological systems. Accumulating studies have demonstrated that these gasotransmitters play a critical role in a wide spectrum of physiological and/or pathophysiological processes by regulating numerous signaling pathways. These gas signal molecules are emerging as important players in cardiovascular homeostasis, and disruption of these gasotransmitters is critically implicated in cardiovascular anomalies, such as hypertension, atherosclerosis, myocardial ischemia, heart failure, and stroke. Also, evidence is emerging that H2S, NO, and CO may be involved in the pathologies of cold stress-induced cardiovascular ailments. In this review, we aim to highlight and discuss the recent advances towards the development of gasotransmitters-based therapeutics for cold stress-related cardiovascular pathogenesis. We believe that the effects of H2S, NO, and CO on cardiovascular regulation under cold environment will attract tremendous interest in the near future as they serve as novel regulators of cardiovascular biology in cold environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.