New Voltage Differencing Differential Input Buffered Amplifier (VD-DIBA) based lossless grounded and floating inductance simulation circuits have been proposed. The proposed grounded simulated inductance circuit employs a single VD-DIBA, one floating resistance and one grounded capacitor. The floating simulated inductance (FI) circuits employ two VD-DIBAs with two passive components (one floating resistance and one grounded capacitor). The circuit for grounded inductance does not require any realization conditions where as in case of floating inductance circuits, a single matching condition is needed. Simulation results demonstrating the applications of the new simulated inductors using CMOS VD-DIBAs have been included to confirm the workability of the new circuits.
In this paper, a new single-resistance controlled sinusoidal oscillator (SRCO) using single universal voltage conveyor (UVC) has been presented. The proposed SRCO employs single universal voltage conveyor, three resistors, and two capacitors. The proposed configuration offers the following advantageous features (1) independent control of condition of oscillation and frequency of oscillation (2) low passive sensitivities. The validity of the proposed SRCO has been established by SPICE (version 16.5) simulations using Taiwan Semiconductor Manufacturing Company (TSMC) 0.18 µm technology.
A new electronically controllable sinusoidal oscillator employing two voltage differencing-differential input buffered amplifiers (VD-DIBAs), two grounded capacitors, and one grounded resistor is presented. The proposed configuration offers (i) independent control of condition of oscillation (CO) and frequency of oscillation (FO) formerly by resistance and later through transconductance, (ii) low active and passive sensitivities, and (iii) a good frequency stability. The workability of the proposed configuration has been demonstrated by SPICE simulation.
A new multiple-input single-output-(MISO-)-type multifunction voltage-mode universal biquadratic filter employing single voltage differencing differential input buffered amplifier (VD-DIBA), two capacitors, and one resistor are proposed. The proposed structure can realize second-order low pass, high pass, band pass, band stop, and all pass filter responses without altering the circuit topology. The proposed new filter configuration also provides the following advantageous features, not available simultaneously in any of the single active device /element-based universal biquad in realizing all the five filter functions known earlier so far: (i) no requirement of any passive component(s) matching condition or inversion of input signal(s), (ii) independent electronic control of angular frequency ( 0 ) and bandwidth (BW), and (iii) low active and passive sensitivities. SPICE simulation results have been included using 0.35 m TSMC technology to confirm the validity of the proposed new universal biquadratic filter configuration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.