In present paper, buckling analysis is performed over laminated composite beam incorporating multi walled carbon nanotube (MWCNT) polymer matrix and then reinforced with E-glass fiber in an orthotropic manner under inplane varying thermal and mechanical loads by finite element method (FEM). Aim of the study is to develop a model which accurately perform the buckling deterministic analysis of multi-walled carbon nanotube reinforced composite laminated beam (MWCNTRCLB) with the evaluation of material property by applying Halpin–Tsai model. Combined Higher order shear deformation theory and Pasternak elastic foundation based on von Karman nonlinear kinematics and Winkler cubic nonlinearity respectively, are successfully implemented. Through minimum potential energy principle, generalized static analysis is performed using FEM, based on interactive MATLAB coding. The critical buckling load and critical buckling temperature is presented under the action of inplane variable mechanical and thermal load, with different boundary conditions, beam thickness ratio and MWCNT aspect ratio, variation with MWCNT volume fraction and coefficient of thermal expansion, with and without foundation for linear and nonlinear cases.
This paper presents the effect of the variations of multi-walled carbon nanotube (MWCNT) modification in shape memory polymer hybrid composites concerning their mechanical, thermomechanical, and shape memory characterizations. The process of fabrication includes preparation of the MWCNT/epoxy hybrid nanocomposites by shear mixing, ultrasonication, magnetic stirring, and subsequent molding by hand layup method. The appropriate post-processing was performed for the curing and cutting to prepare the samples for the mechanical and thermomechanical characterizations as per the ASTM standards. An enhancement in the thermomechanical properties was noticed due to the incorporation of the MWCNT. These observations were also validated with improvement in the interfacial bonding between the carbon fiber and the modified matrix, as shown in the morphological fractography. The tensile strengths were improved by 18%, 39%, and 26% with the incorporation of 0.4%, 0.6%, and 0.8% modified MWCNT nanocomposites as compared to pure unmodified SMPC. However, the shape recovery of all the configurations of the shape memory polymer hybrid composites was not compromised on polymer-modified remaining almost unchanged at 94%.
In this study, nonlinear post-buckling and free vibration analysis of shape memory polymer sandwich composite (SMPSC) under dynamic temperature variation is performed. For the analysis, simplified Co continuity based on higher-order shear deformation theory (HSDT) has been adopted to perform finite element analysis (FEA). Numerical solutions are obtained by iterative Newton–Raphson method considering Von-Karman nonlinear kinematics. Material properties of SMPSC, with Shape Memory Polymer (SMP) as matrix and carbon fiber as reinforcements, have been calculated by theory of volume averaging. The effect of dynamic temperature variation and axial variable inplane loadings (AVIL) on SMPC and SMPSC has been evaluated for various parameters such as beam thickness ratio, layer variation, boundary conditions (BCs), position of core, thickness of core in sandwich structures for the first time. Apart from these, this study also clearly reveals the difference in magnitude of buckling and free vibration parameters between the shape memory polymer composites (SMPC) and SMPSC, before and after glass transition region of material.
Among many smart materials, piezoelectric materials have emerged as the most studied ones for practical applications. They owe their success to several factors, including low price, high bandwidth, availability in various formats, and ease of handling and implementation. The present study focused on the performance of piezoelectric laminated composite plate under various electromechanical loading conditions by utilizing the first-order shear deformation theory with the Newton–Raphson residual and iteration with Gauss integration point in Ansys. For the first time, the effects of electrical loading, circuit arrangement, voltage variation, and polynomial variable transverse loading are studied over piezoelectric composite plate (PCP). The effects of plate aspect ratio, thickness ratio, boundary conditions, ply orientations, nature of loading conditions, and voltage variation are presented. The study also utilized open and close circuit arrangements as sensors and actuators to gauge the performance of PCP in the form of static bending analysis. The maximum OC (open circuit) output voltage is generated with the N4 type of loading compared with N i ( i = 1–4); on the other hand, the OC output voltage is minimum with N5. The combined effect of external load and voltage presented in the study will be useful for analyzing the deflection variation, and it can further be implemented in reducing deflection or vibration. It is noted that, with a higher piezoelectric to laminate thickness (t/h) ratio, the maximum OC output voltage is observed. In addition, the rate of voltage generation observed is the highest under the N4 loading condition and the lowest under the N5 type of load.
Thermal post-buckling analysis of smart sandwich plates has been presented with the incorporation of shape memory alloy (SMA) and shape memory polymer (SMP) in laminated composite structure under uniform temperature distribution. Buckling analysis is based on higher order shear deformation theory (HSDT) with von Karman nonlinearity by finite element method (FEM). Evaluation of critical buckling temperature has been performed under the action of inplane uniform temperature distribution for different boundary conditions, plate’s aspect and thickness ratio, modulus ratio, ply orientations of smart SMA hybrid sandwich composite plate. Shape memory alloys itself acting uniquely under temperature variation and with SMA reinforced SMP laminated composite plate this phenomenon extended further under dynamic temperature condition for thermal buckling behavior. Also SMA with different strain rate and variation in SMA volume fraction is also presented to understand the cumulative buckling behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.