Summary The dynamic and reversible acetylation of proteins catalyzed by histone acetyltransferases (HATs) and histone deacetylases (HDACs) is a major epigenetic regulatory mechanism of gene transcription 1 associated with multiple diseases. While HDAC inhibitors are approved to treat certain cancers, progress on the development of drug-like HAT inhibitors has lagged 2. The HAT paralogs p300 and CBP (p300/CBP) are key transcriptional co-activators essential for a multitude of cellular processes and also implicated in human pathological conditions, including cancer 3. Current p300/CBP HAT domain inhibitors including natural products, 4 bi-substrate analogs (Lys-CoA) 5 and the widely utilized C646 6, 7 lack potency or selectivity. Here, we describe A-485, a potent, selective and drug-like p300/CBP catalytic inhibitor. We show the first high resolution (1.95Å) co-crystal structure of a small molecule bound to the catalytic active site of p300 and demonstrate that A-485 is acetyl-CoA competitive. A-485 selectively inhibited proliferation across lineage-specific tumor types, including several hematological malignancies and androgen receptor-positive prostate cancer. A-485 inhibited the androgen receptor transcriptional program in both androgen sensitive and castrate resistant prostate cancer and inhibited tumor growth in a castration resistant xenograft model. These results demonstrate the feasibility of selectively targeting the catalytic activity of histone acetyltransferases.
This report presents an overview of the family of naturally occurring 'vinylic' amino acids, namely those that feature a C-C double bond directly attached to the α-carbon, along the side chain. Strategies that have been brought to bear on the stereocontrolled synthesis of these olefinic amino acids are surveyed. The mechanistic diversity by which such 'vinylic triggers' can be actuated in a PLP (pyridoxal phosphate) enzyme active site is then highlighted by discussions of vinylglycine (VG), its substituted congeners, particularly AVG [4E-(2'-aminoethoxy)vinylglycine], and a naturally occurring VG-progenitor, SMM (S-methylmethionine).
On the one hand, owing to its electronegativity, relatively small size, and notable leaving group ability from anionic intermediates, fluorine offers unique opportunities for mechanism-based enzyme inhibitor design. On the other, the “bio-orthogonal” and NMR-active 19-fluorine nucleus allows the bioorganic chemist to follow the mechanistic fate of fluorinated substrate analogues or inhibitors as they are enzymatically processed. This article takes an overview of the field, highlighting key developments along these lines. It begins by highlighting new screening methodologies for drug discovery that involve appropriate tagging of either substrate or the target protein itself with 19F-markers, that then report back on turnover and binding, respectively, via an the NMR screen. Taking this one step further, substrate-tagging with fluorine can be done is such a manner as to provide stereochemical information on enzyme mechanism. For example, substitution of one of the terminal hydrogens in phosphoenolpyruvate, provides insight into the, otherwise latent, facial selectivity of C-C bond formation in KDO synthase. Perhaps, most importantly, from the point of view of this discussion, appropriately tailored fluorinated functionality can be used to form to stabilized “transition state analogue” complexes with a target enzymes. Thus, 5-fluorinated pyrimidines, α-fluorinated ketones, and 2-fluoro-2-deoxysugars each lead to covalent adduction of catalytic active site residues in thymidylate synthase, serine protease and glycosidase enzymes, respectively. In all such cases, 19F NMR allows the bioorganic chemist to spectrally follow “transition state analogue” formation. Finally, the use of specific fluorinated functionality to engineer “suicide substrates” is highlighted in a discussion of the development of the α-(2′Z-fluoro)vinyl trigger for amino acid decarboxylase inactivation. Here 19F NMR allows the bioorganic chemist to glean useful partition ratio data directly out of the NMR tube.
p300 and its paralog CBP can acetylate histones and other proteins and have been implicated in a number of diseases characterized by aberrant gene activation, such as cancer. A novel, highly selective, orally bioavailable histone acetyltransferase (HAT) domain inhibitor has been identified through virtual ligand screening and subsequent optimization of a unique hydantoin screening hit. Conformational restraint in the form of a spirocyclization followed by substitution with a urea led to a significant improvement in potency. Replacement of the hydantoin moiety with an oxazolidinedione followed by fluoro substitution led to A-485, which exhibits potent cell activity, low clearance, and high oral bioavailability.
Described is a new method for the screening of an array of catalysts, in situ, to estimate enantioselectivity and relative rates. We term this approach "double-cuvette ISES (in situ enzymatic screening)". The Co(III)-salen mediated hydrolytic kinetic resolution (HKR) of (+/-)-propylene oxide is used as a model reaction to demonstrate proof of principle. In two parallel cuvettes, a lower CHCl3-based organic layer is loaded with the epoxide and the chiral salen catalyst. Aqueous reporting layers, containing distinct "reporting enzymes" and their nicotinamide cofactors, are layered above the organic layers. The 1,2-propanediol enantiomers formed by the chiral catalyst diffuse into the aqueous layer and are oxidized there by the reporting enzymes at rates dependent upon the diol concentration, the R:S ratio of the diol, and the enantioselectivity of the reporting enzymes. A focused chiral salen library was constructed from seven chiral 1,2-diamines, derived from amino acid, terpenoid, and carbohydrates skeletons, and seven salicylaldehyde derivatives. Double-cuvette ISES identified a couple of interesting combinatorial hits in this salen array, wherein either the sense or magnitude of enantioselection for a given chiral diamine depends significantly upon the choice of "salicylaldehyde" partner. A comparison of predicted ee's and relative rates using this new screening tool with those independently measured is provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.