The dump temperature and mixing interval between rubber, silica and silane coupling agent for silica-filled natural rubber (NR) tire tread compounds using bis-triethoxysilylpropyl tetrasulfide (TESPT) as silane were optimized. The dump temperature turns out to be the key parameter governing the properties of the silica-filled NR compounds. The increase in
ABSTRACT:Composites of natural rubber (NR) and short pineapple leaf fiber (PALF) were prepared on a laboratory two-roll mill. The influences of untreated fiber content and orientation on the processing and mechanical properties of the composites were investigated. The dependence of extent of orientation on fiber concentration was also established. Sodium hydroxide (NaOH) solutions (1, 3, 5, and 7% w/v) and benzoyl peroxide (BPO) (1, 3, and 5 wt % of fiber) were used to treat the surfaces of PALFs. FTIR and scanning electron microscope (SEM) observations were made of the treatments in terms of chemical composition and surface structure. The tensile strength and elongation at break of the composites were later studied. The fiber-matrix adhesion was also investigated using SEM technique. It was found that all surface modifications enhanced adhesion and tensile properties. The treatments with 5% NaOH and 1% BPO provided the best improvement of composite strength (28 and 57% respectively) when compared with that of untreated fiber. The PALF-NR composites also exhibited better resistance to aging than its gum vulcanizate, especially when combined with the treated fibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.