Familial members of urolithiasis have high risk for stone development. We observed the low sulfated glycosaminoglycan (GAG) excretion in urolithiasis patients and their descendants. In this study, we investigated urinary excretion of sulfated GAG, chondroitin sulfate (CS), heparan sulfate (HS) and hyaluronic acid (HA) in urolithiasis and their children, and explored the effect of CS and HA supplement in urolithic hyperoxaluric rats. The 24-hour urines were collected from urolithiasis patients (28) and their children (40), as well as healthy controls (45) and their children (33) to measure urinary sulfated GAG, CS, HS and HA excretion rate. Our result showed that urinary sulfated GAG and CS were diminished in both urolithiasis patients and their children, while decreased HS and increased HA were observed only in urolithiasis patients. Percentage of HS per sulfated GAG increased in both urolithiasis patients and their children. In hyperoxaluric rats induced by ethylene glycol and vitamin D, we found that CS supplement could prevent stone formation, while HA supplement had no effect on stone formation. Our study revealed that decreased urinary GAG and CS excretion are common in familial members of urolithiasis patients, and CS supplement might be beneficial in calcium oxalate urolithiasis prophylaxis for hyperoxaluric patients.
Capillary electrophoresis with large‐volume sample stacking using an electroosmotic flow pump was developed for the determination of chondroitin sulfate, dermatan sulfate, and hyaluronic acid. Central composite design was used to simultaneously optimize the parameters for capillary electrophoresis separation. The optimized capillary electrophoresis conditions were 200 mM sodium dihydrogen phosphate, 200 mM butylamine, and 0.5% w/v polyethylene glycol as a background electrolyte, pH 4 and ‐16 kV. Exploiting large‐volume sample stacking using an electroosmotic flow pump, the sensitivity of the proposed capillary electrophoresis system coupled with UV detection was significantly improved with limits of detection of 3, 5, 1 mg/L for chondroitin sulfate, dermatan sulfate, and hyaluronic acid, respectively. The developed method was applied to the determination of chondroitin sulfate and hyaluronic acid in cell culture media, cerebrospinal fluid, cosmetic products, and supplementary samples with highly acceptable accuracy and precision. Therefore, the proposed capillary electrophoresis approach was found to be simple, rapid, and reliable for the determination of chondroitin sulfate, dermatan sulfate, and hyaluronic acid in cell culture media, cerebrospinal fluid, cosmetic, and supplementary samples without sample pretreatment.
Electrocoagulation (EC) approach was developed to allow fast sample clean-up step prior to selective analysis of non- and mono-hydroxylated phenolic acids in red wine samples with high performance liquid chromatography hyphenated with UV detection (HPLC-UV).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.