BackgroundPlant species have long been used as principal ingredients of traditional medicine in far-west Nepal. The medicinal plants with ethnomedicinal values are currently being screened for their therapeutic potential but their data and information are inadequately compared and analyzed with the Ayurveda and the phytochemical findings.MethodsThe present study evaluated ethnomedicinal plants and their uses following literature review, comparison, field observations, and analysis. Comparison was made against earlier standard literature of medicinal plants and ethnomedicine of the same area, the common uses of the Ayurveda and the latest common phytochemical findings. The field study for primary data collection was carried out from 2006-2008.ResultsThe herbal medicine in far-west Nepal is the basis of treatment of most illness through traditional knowledge. The medicine is made available via ancient, natural health care practices such as tribal lore, home herbal remedy, and the Baidhya, Ayurveda and Amchi systems. The traditional herbal medicine has not only survived but also thrived in the trans-cultural environment with its intermixture of ethnic traditions and beliefs. The present assessment showed that traditional herbal medicine has flourished in rural areas where modern medicine is parsimoniously accessed because of the high cost and long travel time to health center. Of the 48 Nepalese medicinal plants assessed in the present communication, about half of the species showed affinity with the common uses of the Ayurveda, earlier studies and the latest phytochemical findings. The folk uses of Acacia catechu for cold and cough, Aconitum spicatum as an analgesic, Aesculus indica for joint pain, Andrographis paniculata for fever, Anisomeles indica for urinary affections, Azadirachta indica for fever, Euphorbia hirta for asthma, Taxus wallichiana for tumor control, and Tinospora sinensis for diabetes are consistent with the latest pharmacological findings, common Ayurvedic and earlier uses.ConclusionsAlthough traditional herbal medicine is only a primary means of health care in far-west Nepal, the medicine has been pursued indigenously with complementing pharmacology and the Ayurveda. Therefore, further pharmacological evaluation of traditional herbal medicine deserves more attention.
The worldwide increase of multidrug resistance in both community- and health-care associated bacterial infections has impaired the current antimicrobial therapy, warranting the search for other alternatives. We aimed to find the in vitro antibacterial activity of ethanolic extracts of 16 different traditionally used medicinal plants of Nepal against 13 clinical and 2 reference bacterial species using microbroth dilution method. The evaluated plants species were found to exert a range of in vitro growth inhibitory action against the tested bacterial species, and Cynodon dactylon was found to exhibit moderate inhibitory action against 13 bacterial species including methicillin-resistant Staphylococcus aureus, imipenem-resistant Pseudomonas aeruginosa, multidrug-resistant Salmonella typhi, and S. typhimurium. The minimum inhibitory concentration (MIC) values of tested ethanolic extracts were found from 31 to >25,000 μg/mL. Notably, ethanolic extracts of Cinnamomum camphora, Curculigo orchioides, and Curcuma longa exhibited the highest antibacterial activity against S. pyogenes with a MIC of 49, 49, and 195 μg/mL, respectively; whereas chloroform fraction of Cynodon dactylon exhibited best antibacterial activity against S. aureus with a MIC of 31 μg/mL. Among all, C. dactylon, C. camphora, C. orchioides, and C. longa plant extracts displayed a potential antibacterial activity of MIC < 100 μg/mL.
Lying at western corner of the Kathmandu city, the Swoyambhu hillock (1403.76m) represents a surviving pristine forest in the metropolitan capital of Nepal. Once an extension of Jamaca (2096m) with luxuriant sub-tropical forest is now invaded by dense human population and other developmental activities. This hillock is still rich with a total plant species of 319. Of them, 65 are trees, 43 shrubs, 194 herbs and 17 climbers. Northern slope of the hillock is rich in tree species with scattered patches of under-growing bushes and ferns, whereas southern, western and eastern slopes are much disturbed with exotic species of plants, creating challenges to the norms of the heritage standard. Domination by Pinus roxburghii (chire pine) and Eucalyptus, Jacaranda and Callistemon, etc are altering the indigenous nature of the hillock. And also the forested hillock has been randomly utilized for refreshment, yoga, ayurbedic remedy and food. Due to growing constructions and exploitations, the forested hillock is now facing a threat to maintain its pristine ecosystem. <i>Nepal Journal of Science and Technology</i> Vol. 7, 2006
Stem cell has immense potential in regenerative cellular therapy. Mesenchymal stem cells (MSCs) can become a potential attractive candidate for therapy due to its remarkable ability of self-renewal and differentiation into three lineages, i.e., ectoderm, mesoderm, and endoderm. Stem cell holds tremendous promises in the field of tissue regeneration and transplantation for disease treatments. Globally, medicinal plants are being used for the treatment and prevention of a variety of diseases. Phytochemicals like naringin, icariin, genistein, and resveratrol obtained from plants have been extensively used in traditional medicine for centuries. Certain bioactive compounds from plants increase the rate of tissue regeneration, differentiation, and immunomodulation. Several studies show that bioactive compounds from plants have a specific role (bioactive mediator) in regulating the rate of cell division and differentiation through complex signal pathways like BMP2, Runx2, and Wnt. The use of plant bioactive phytochemicals may also become promising in treating diseases like osteoporosis, neurodegenerative disorders, and other tissue degenerative disorders. Thus, the present review article is aimed at highlighting the roles and consequences of plant extracts on MSCs proliferation and desired lineage differentiations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.