This study investigated the flow bifurcations of flows driven by a pressure gradient in a rectangular curved tube. When fluid flows within a curved tube, due to the centrifugal effect, secondary vortices can be induced in the cross section of the tube. The secondary flow states are dependent on the magnitude of the pressure gradient (q) and the aspect ratio (γ). In this study, the continuation method was applied to investigate the flow bifurcations in a curved tube with increasing pressure gradient (1 < q < 6000) and aspect ratio (0.9 < γ < 1.4).The bifurcation diagrams are composed of solution branches, which are linked by limiting points or bifurcation points. The flow states in a solution branch belong to the same group. The ranges of the flow states and the relationship between the states can also be derived from the bifurcation diagrams. In this study, two types of bifurcation were found, one in the range of 0.9 < γ < 1.17, and another in the range of 1.18 < γ < 1.4. The ranges of stable flow solutions and the distributions of limit and bifurcation points in both pressure gradient and aspect ratio are derived in this study.
In this paper, the authors investigate the use of an applied AC electric field and microchannel surface heterogeneities to carry out the microfluidic mixing of two-dimensional, time-dependent electroosmotic flows. The time-dependent flow fields within the microchannel are simulated using the backwards-Euler time-stepping numerical method. The mixing efficiencies obtained in microchannels with two different patchwise surface heterogeneity patterns are investigated. In general, the results show that the application of an AC electric field significantly reduces the required mixing length compared with the use of a DC electric field. Furthermore, the presence of oppositely charged surface heterogeneities on the microchannel walls results in the formation of localized flow circulation regions within the bulk flow. These circulation regions grow and decay periodically in accordance with the periodic variation of the AC electric field intensity and provide an effective means of enhancing species mixing in the microchannel. Consequently, the use of an AC electric field together with patchwise surface heterogeneities permits a significant reduction in both the mixing channel length and the retention time required to attain a homogeneous solution.
The electrokinetic instability (EKI) phenomenon occurs when microfluidic flows with an electrical conductivity gradient are driven by a high-intensity external electrical field. Although EKI limits the robust performance of complex electrokinetic bioanalytical systems, it can be actively exploited to achieve the rapid mixing of micro-and nanoliter volume solutions in microscale devices. This paper investigates the EKI phenomenon in a double T-shaped microchannel, in which two aqueous electrolyte solutions with a 3.5 : 1 conductivity ratio are driven electrokinetically into the mixing channel via the application of a DC electrical field. A stratified flow condition is formed when the intensity of the applied DC electrical field is below a certain threshold value. However, as the intensity is increased, a series of flow circulations forms at the interfaces of neighboring solutions flows, and then propagates in the downstream direction when the intensity of the electrical field is increased beyond a certain critical threshold value. Electrical field intensity perturbations aligned in the direction of the conductivity gradient are then added to the DC electrical field at the upper inlet of the double T-shaped microchannel near the main mixing channel. It is found that these perturbations can stir the microfluidic instability and the induced flow instability conditions can enhance the mixing efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.