The epithelial-mesenchymal transition (EMT) is a crucial morphological event that occurs during the progression of epithelial tumors. EMT can be induced by transforming growth factor β (TGF-β) in certain kinds of cancer cells through the induction of Snail, a key regulator of EMT. We have previously found that TGF-β remarkably induces Snail expression in cooperation with Ras signals; however, the underlying mechanism of this synergism has not yet been determined. Here, we demonstrate that signal transducer and activator of transcription 3 (STAT3) acts as a mediator that synergizes TGF-β and Ras signals. The overexpression of STAT3 enhanced Snail induction, whereas siRNA-mediated knockdown of STAT3 inhibited it. The STAT3-YF mutant, which has Tyr 705 substituted with Phe, did not enhance Snail induction. Several STAT3 mutants lacking transcriptional activity also failed to enhance it; however, the putative STAT3-binding elements in the Snail promoter regions were not required for STAT3-mediated Snail induction. Protein inhibitor of activated STAT3 (PIAS3) inhibited the enhanced Snail promoter activity induced by TGF-β and Ras. The interaction between PIAS3 and STAT3 was reduced by TGF-β in cells harboring oncogenic Ras, whereas TGF-β promoted the binding of PIAS3 to Smad3, a crucial mediator of TGF-β signaling. Therefore, these findings suggest that STAT3 enhances Snail induction when it is dissociated from PIAS3 by TGF-β in cooperation with Ras signals.
Phenylalanine dehydrogenase produced by Bacillus badius IAM 11059 was purified from the crude extract of B. badius to homogeneity, as judged by disc gel electrophoresis. The enzyme has an isoelectric point of 3.5 and a relative molecular mass, Mr, of 310000–360000. The enzyme is composed of identical subunits with an Mr 41000–42000. The substrate specificity of the enzyme in the oxidative deamination reaction was high for l‐phenylalanine, but rather low in the reductive amination reaction, with phenylpyruvate, p‐hydroxyphenylpyruvate, and 2‐oxohexanoate. The gene for the enzyme was cloned into Escherichia coli with plasmid pBR322 as a vector. The enzyme was expressed in high level in E. coli. The enzyme produced by E. coli transformant was purified to homogeneity and shown to be identical to that of B. badius IAM 11059 with respect to the specific activity, Mr, subunit structure and amino acid composition.
The epithelial–mesenchymal transition (EMT) is a crucial morphological event that occurs during progression of epithelial tumors. We reported previously that levels of the δ‐crystallin/E2‐box factor 1 (δEF1) family proteins (Zinc finger E‐box binding homeobox 1 [ZEB1]/δEF1 and ZEB2/ Smad‐interacting protein 1), key regulators of the EMT, are positively correlated with EMT phenotypes and aggressiveness of breast cancer. Here, we show that Ets1 induces ZEB expression and activates the ZEB1 promoter, independently of its threonine 38 phosphorylation status. In the basal‐like subtype of breast cancer cells, siRNAs targeting Ets1 repressed expression of ZEBs and partially restored their epithelial phenotypes and sensitivity to antitumor drugs. Epithelium‐specific ETS transcription factor 1 (ESE1), a member of the Ets transcription factor family, was originally characterized as being expressed in an epithelial‐restricted pattern, placing it within the epithelium‐specific ETS subfamily. ESE1, highly expressed in the luminal subtype of breast cancer cells, was repressed by activation of the MEK–ERK pathway, resulting in induction of ZEBs through Ets1 upregulation. Conversely, Ets1, highly expressed in the basal‐like subtype, was repressed by inactivation of MEK–ERK pathway, resulting in reduction of ZEBs through ESE1 upregulation. These findings suggest that ESE1 and Ets1, whose expressions are reciprocally regulated by the MEK–ERK pathway, define the EMT phenotype through controlling expression of ZEBs in each subtype of breast cancer cells.
Benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon produced by cigarette combustion, is implicated as a causative agent in smoking-related cancer and atherosclerosis. 1,25-Dihydroxyvitamin D3 [1,25(OH)2D3], a potent ligand for the nuclear receptor vitamin D receptor (VDR), has been shown to decrease the risk of osteoporosis, some types of cancer and cardiovascular disease, suggesting an opposing effect of vitamin D3 to cigarette smoking. In this study, we investigated the effects of BaP on the vitamin D3 signaling pathway. BaP effectively enhanced the 1,25(OH)2D3-dependent induction of cytochrome P450 24A1 (CYP24A1) in human monocyte/macrophage-derived THP-1 cells and breast cancer MCF-7 cells. BaP combination was less or not effective on mRNA expression of CD14, arachidonate 5-lipoxygenase, and cathelicidin antimicrobial peptide in THP-1 cells. BaP also increased the expression of CYP24A1 induced by a non-vitamin D VDR ligand, lithocholic acid acetate. Another aryl hydrocarbon receptor (AhR) ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin, enhanced CYP24A1 expression by 1,25(OH)2D3 in THP-1 cells. Treatment of cells with an AhR antagonist and a protein synthesis inhibitor inhibited the enhancing effect of BaP on CYP24A1 induction, indicating that the effects of BaP are mediated by AhR activation and de novo protein synthesis. BaP pretreatment increased 1,25(OH)2D3-dependent recruitment of VDR and retinoid X receptor to the CYP24A1 promoter. Analysis of 1,25(OH)2D3 metabolism showed that BaP enhanced the hydroxylation of 1,25(OH)2D3 by CYP24A1 in THP-1 cells. Thus, AhR activation by BaP stimulates vitamin D3 catabolism. Modulation of vitamin D signaling by AhR may represent a mechanism underlying cigarette smoking-related diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.