We investigated the respective effects of the acute supplementation of valine, leucine, and isoleucine on metabolism-related markers by administering a swimming exercise test to rats. As a behavioral analysis, we evaluated the effect of valine and that of leucine on spontaneous activity after exercise. Acute supplementation of valine before exercise significantly suppressed the depression of the liver glycogen and the blood glucose after exercise, whereas leucine decreased the blood glucose and isoleucine had no effect. Valine or leucine supplementation significantly decreased the plasma corticosterone level after exercise, while isoleucine had no effect. In the behavioral analysis, valine significantly increased the spontaneous activity after exercise, whereas leucine had no effect. These results indicate that in rats, the acute supplementation of valine, not leucine or isoleucine, is effective for maintaining liver glycogen and blood glucose and increasing spontaneous activity after exercise, which could contribute to the reduction of fatigue during exercise.
We tested the hypothesis that α-lactalbumin inhibits the disruption of intestinal barrier function and liver cirrhosis by restoring gut-liver axis function in thioacetamide (TAA) -treated rats. Rat diets were supplemented with α-lactalbumin replacing 50% of dietary protein. After consuming α-lactalbumin for one week, rats were intraperitoneally injected with TAA twice a week for 14 weeks. The α-lactalbumin-enriched diet significantly inhibited the elevation of plasma alanine aminotransferase, aspartate aminotransferase, and hyaluronic acids. The supplement significantly reduced plasma lipopolysaccharide levels and increased occludin mRNA level. Hepatic fibrosis and regenerative nodules was developed and intestinal villi were shortened by TAA; α-Lactalbumin attenuated these histopathological changes. These results indicated that α-lactalbumin improved intestinal barrier function, suppressing endotoxin levels. These data also suggested that α-lactalbumin ameliorated the impairment of the gut-liver axis by TAA, inhibiting the development of liver cirrhosis.
Aim: Some amino acids been known to influence gastric emptying. Thus we have evaluated the effects of straight alkyl chain, extra hydroxylated alkyl chain and branched chain amino acids on gastric emptying. Materials and Methods: Gastric emptying was evaluated in rats after feeding with Racol (nutrient formulae) containing [1-13C] acetic acid. Using a breath test, the content of 13CO2 in their expired air was measured by infrared analyzers. Rats were orally administered with test amino acids, while control rats were administered orally with distilled water. Results: The expired 13CO2 content in the expired air increased with time, peaked after about 30 min and decreased thereafter. Among the amino acids having an alkyl chain, l-serine, l-alanine and l-glycine, significantly decreased the 13CO2 content and Cmax, and delayed Tmax, suggesting inhibition and delay of gastric emptying. AUC120 min values of l-alanine and l-glycine also decreased significantly. l-Threonine significantly decreased 13CO2 content and delayed Tmax, but had no influence on Cmax and AUC120 min values, suggesting a delay of gastric emptying. l-Isoleucine and l-leucine and l-valine significantly decreased 13CO2 content, suggesting inhibition of the gastric emptying, but Cmax, Tmax and AUC120 min values were not significantly affected. Conclusion: The results show that the amino acids used in the present study had different effects on gastric emptying. Moreover, it was found that inhibition and delay of gastric emptying were clearly classifiable by analyzing the change in 13CO2 content of the expired air and the Cmax, Tmax and AUC120 min values.
It was reported that trypsin-treated β-lactoglobulin (β-LG) had a glucose-lowering effect in the oral glucose tolerance test (OGTT) in mice and a dipeptidyl peptidase-4 (DPP-4) inhibition activity in vitro. However, whether trypsin-treated β-LG improves glucose tolerance by inhibiting DPP-4 in vivo has not yet been examined, and the mechanism of the glucose-lowering effect of trypsin-treated β-LG is thus unclear. Here we investigated the detailed mechanism underlying the glucose tolerance effect of trypsin-treated β-LG. The oral administration of trypsin-treated β-LG significantly decreased the blood glucose concentrations in both the OGTT and an intraperitoneal glucose tolerance test (IPGTT). However, trypsin-treated β-LG did not increase the insulin secretion after glucose loading. Trypsin-treated β-LG potently increased the level of phosphorylated AMP-activated protein kinase (AMPK) in human hepatocellular carcinoma (HepG2) cells and in mice hepatocytes. Moreover, trypsin-treated β-LG significantly enhanced glucose uptake into the HepG2 cells. These results indicate that trypsin-treated β-LG decreases blood glucose levels after glucose loading by upregulating AMPK activation and glucose uptake in the liver, which could contribute to the reduction of postprandial hyperglycemia.
Protein restriction is a well-known risk factor that induces the deterioration of various biological functions. However, little is known about the effects of protein restriction on behavioral markers and the adrenal function of mice exposed to chronic stress. Here we evaluated the effects of a low-protein diet on the spontaneous activity and adrenal function of chronic heat-stressed mice. ICR mice were fed a control diet (20% protein) or a low-protein diet (10% protein) for 14 consecutive days. From the 10th day of the diet period, the mice were repeatedly exposed to a temperature condition of 35 ± 1 °C for 2 hr/day for four consecutive days. The spontaneous activities of the mice were estimated for the behavioral analysis. On the last day, we performed a blood collection test and an ACTH stimulation test for adrenal function analysis. For the blood collection test, mice were exposed to heat stress again for 2 hr, and blood was collected immediately after this heat stress. We measured the plasma levels of corticotropin releasing hormone, adrenocorticotropin (ACTH), and corticosterone. For the ACTH stimulation test, cosyntropin was intraperitoneally administered, and the plasma corticosterone levels were measured. The spontaneous activity of the low-protein mice was significantly lower than that of the control mice during the dark period of heat stress. The plasma corticosterone levels were greatly increased by heat stress, with no significant difference between the control and low-protein groups. The ACTH stimulation test revealed that the plasma corticosterone concentration of the heat-stressed low-protein mice was significantly lower than that of the heat-stressed controls. In conclusion, the low-protein diet decreased the spontaneous activity and the adrenal function of mice during heat stress, which implies that protein restriction during chronic heat stress induces fatigue by reducing the adrenal function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.