Japanese herbal (Kampo) medicine, Hochuekkito (Bu-Zhong-Yi-Qi-Tang in Chinese, TJ-41) and Juzentaihoto (Shi-Quan-Da-Bu-Tang in Chinese, TJ-48) are well-known Kampo formulas used as tonic. Although these medicines have separately been applied to the patients clinically depending on their symptoms, the differences of the pharmacological activities for these medicines have not been fully understood. TJ-48 and TJ-41 were compared for their effects on antibody response in upper respiratory mucosal immune system in vivo. Oral administration of TJ-41 (100 mg kg−1 per day) to early aged BALB/c mice, which were nasally sensitized with influenza hemagglutinin vaccine, significantly enhanced influenza virus-specific IgA and IgG antibody titers in nasal cavity and sera, respectively. However, oral administration of TJ-48 (100 mg kg−1 per day) failed to show the enhancing activity. TJ-41 increased not only influenza virus-specific IgA antibody titer but also total IgA antibody titer in nasal cavity. The stimulating activity of TJ-41 disappeared after treatment with methotrexate. The present study strongly suggests that TJ-41 can stimulate the mucosal immune system of upper respiratory tract, and results in enhancement of antigen-specific antibody response in upper respiratory mucosal and systemic immune systems.
BackgroundEpidemiological studies have suggested that the encounter with commensal microorganisms during the neonatal period is essential for normal development of the host immune system. Basic research involving gnotobiotic mice has demonstrated that colonization at the age of 5 weeks is too late to reconstitute normal immune function. In this study, we examined the transcriptome profiles of the large intestine (LI), small intestine (SI), liver (LIV), and spleen (SPL) of 3 bacterial colonization models—specific pathogen-free mice (SPF), ex-germ-free mice with bacterial reconstitution at the time of delivery (0WexGF), and ex-germ-free mice with bacterial reconstitution at 5 weeks of age (5WexGF)—and compared them with those of germ-free (GF) mice.ResultsHundreds of genes were affected in all tissues in each of the colonized models; however, a gene set enrichment analysis method, MetaGene Profiler (MGP), demonstrated that the specific changes of Gene Ontology (GO) categories occurred predominantly in 0WexGF LI, SPF SI, and 5WexGF SPL, respectively. MGP analysis on signal pathways revealed prominent changes in toll-like receptor (TLR)- and type 1 interferon (IFN)-signaling in LI of 0WexGF and SPF mice, but not 5WexGF mice, while 5WexGF mice showed specific changes in chemokine signaling. RT-PCR analysis of TLR-related genes showed that the expression of interferon regulatory factor 3 (Irf3), a crucial rate-limiting transcription factor in the induction of type 1 IFN, prominently decreased in 0WexGF and SPF mice but not in 5WexGF and GF mice.ConclusionThe present study provides important new information regarding the molecular mechanisms of the so-called "hygiene hypothesis".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.