Exposure to magnetic fields from the electronic article surveillance (EAS) gate was evaluated in consideration of the application to epidemiological studies of library workers who are exposed continually to intermediate frequency magnetic fields from the EAS gate. Two types of exposures were investigated. One was transient exposure due to passing through or beside the gate and another was chronic exposure in the room. We measured magnetic fields from five EAS gate models which were commonly used in libraries in Japan. Detailed measurements were performed for two of them in consideration of the phase difference of vector components of magnetic flux density. The polarization of the magnetic field in the gate was investigated with the index of ellipticity. The induced electric field in a human body was numerically calculated for exposures to magnetic fields of the two gate models. The results provide a quantitative understanding of exposures during passing through or by the EAS gate. Magnetic field distribution was measured in a large room for one gate model to quantify the chronic exposure of library workers during the work at the desk. It was found that the magnetic field was distributed as a function of the horizontal distance to the nearest gatepost. The 45-point average value BIEC defined by the IEC standard was suggested to be a useful quantity to characterize the magnitude of the magnetic field from the EAS gate. Exposures to different EAS gates are expected to be compared through this quantity without detailed measurements. These results are expected to provide useful means for exposure assessment of epidemiological studies on the association between the IF-EMF exposure and possible health outcomes.
Car-mounted measurements of radiofrequency electromagnetic exposure levels were carried out in a large area around Tokyo. Prior to the electric field (E-field) measurements using a car, the effect of the car body was evaluated in an anechoic chamber. The measurements between May 2021 and February 2022 were carried out within a radius of 100 km centering on Nihonbashi, Tokyo, with a measurement distance of about 13,800 km. The measurement results were averaged in the reference area mesh (1 km2). It was found that the E-field strengths of FM/TV frequency bands are lower than that of mobile phone base stations. It was also found that the E-field strength of only the 5G frequency band is approximately 20–30 dB lower than that of all mobile phone systems. However, note that it is possible to depend on the data traffic of 5G. The E-field strength of all bands is higher in Tokyo than in other prefectures. Additionally, repeated measurements were carried out to investigate the reproducibility of the measured E-field. The standard deviation is less than 3 dB along the same route, and a similar tendency of E-field strength by the car to the time-averaged results of spot measurements in the past was confirmed. Finally, the relationship of E-field strength with population density was investigated. It was found that the E-field strength from mobile phone base stations has a positive relationship with population density.
ObjectiveTo assess exposure levels to electromagnetic fields (EMFs) among library workers in Japan, focusing on co-exposure to intermediate-frequency EMF (IF-EMF) and pulsed EMF, to propose a new epidemiological research methodology.MethodsThe evaluated exposure sources were an electromagnetic type-electronic article surveillance gate (EM-EAS, IF-EMF (operating frequency 220 Hz-14 kHz)) and an activator/deactivator of anti-theft tags termed as “book check unit” (BCU, pulsed EMF). Short-term exposures were: (E1) whole-body exposure from the EAS gate when sitting within 3 m; (E2) local exposure to transient IF-EMF while passing through or beside the EAS gate; and (E3) local exposure to a pulsed magnetic field on BCU use. E1–E3 were evaluated based on exposure levels relative to magnetic flux density at the occupational reference level (RL; E1) or as per occupational basic restrictions (BR; E2 and E3) delineated by the International Commission on Non-Ionizing Radiation Protection (ICNIRP) 2010 guidelines. Exposure indices based on mid-term exposure (D1–D3), assuming exposure according to employment on a weekly basis, were used to assess exposure in actual working conditions. D1 represents continuous exposure from an EAS gate when sitting within 3 m of the gate. D2 and D3 represent repeated transient exposures occurring during gate pass or on the operation of a BCU. A link to a web-based questionnaire was distributed to librarians working at all libraries where the authors had mailed institutional questionnaires (4,073 libraries). Four exposure patterns were defined according to various exposure scenarios.ResultsWe obtained information on exposure parameters and working conditions from the 548 completed questionnaires. The ICNIRP guideline levels were not exceeded in any of the E1–E3 scenarios. Median of the D1 (% ICNIRP RL × hour/week) was 1, and >85% respondents had values <10. However, the maximum value was 513. Altogether, these results indicate that continuous exposure was low in most cases. The same tendency was observed regarding repeated transient exposure from EM-EAS gates (i.e., the median value for D2 (% ICNIRP BR × gate pass) was 5). However, there were several cases in which D1 and D2 values were >10 times the median. The median of D3 (% ICNIRP BR × BCU operation) was 10, and most respondents' D3 values were greater than their D2 values, although the derived results depended on the assumptions made for the estimation.ConclusionWe conducted an assessment of combined exposures to IF-EMF and pulsed EMF among library workers in Japan by evaluating both short-term exposures (E1–E3) and exposure indices based on mid-term exposures (D1–D3) assuming actual working conditions per questionnaire results. These results provide useful information for future epidemiological studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.