Bacteria are essential components of all natural and many engineered systems. The most active fractions of bacteria are now recognized to occur as biofilms, where cells are attached and surrounded by a secreted matrix of “sticky” extracellular polymeric substances. Recent investigations have established that significant accumulation of nanoparticles (NPs) occurs in aquatic biofilms. These studies point to the emerging roles of biofilms for influencing partitioning and possibly transformations of NPs in both natural and engineered systems. While attached biofilms are efficient “sponges” for NPs, efforts to elucidate the fundamental mechanisms guiding interactions between NPs and biofilms have just begun. In this mini review, special attention is focused on NP–biofilm interactions within the aquatic environment. We highlight key physical, chemical, and biological processes that affect interactions and accumulation of NPs by bacterial biofilms. We posit that these biofilm processes present the likely possibility for unique biological and chemical transformations of NPs. Ultimately, the environmental fate of NPs is influenced by biofilms, and therefore requires a more in-depth understanding of their fundamental properties.
As nanoparticles (NPs) enter into biological systems, they are immediately exposed to a variety and concentration of proteins. The physicochemical interactions between proteins and NPs are influenced by the surface properties of the NPs. To identify the effects of NP surface heterogeneity, the interactions between bovine serum albumin (BSA) and gold NPs (AuNPs) with similar chemical composition but different surface structures were investigated. Different interaction modes and BSA conformations were studied by dynamic light scattering, circular dichroism spectroscopy, fluorescence quenching and isothermal titration calorimetry (ITC). Depending on the surface structure of AuNPs, BSA seems to adopt either a "side-on" or an "end-on" conformation on AuNPs. ITC demonstrated that the adsorption of BSA onto AuNPs with randomly distributed polar and nonpolar groups was primarily driven by electrostatic interaction, and all BSA were adsorbed in the same process. The adsorption of BSA onto AuNPs covered with alternating domains of polar and nonpolar groups was a combination of different interactions. Overall, the results of this study point to the potential for utilizing nanoscale manipulation of NP surfaces to control the resulting NP-protein interactions.
This paper examines the bio-derived stabilization of sand-only or sand-plus-silt soils using an extracted bacterial enzyme application to achieve induced calcite precipitation (ICP). As compared to conventional microbial induced calcite precipitation (MICP) methods, which use intact bacterial cells, this strategy that uses free urease catalysts to secure bacterial enzyme–induced calcite precipitation (BEICP) appears to offer an improved means of bio-stabilizing silty-sand soils as compared to that of MICP processing. Several benefits may possibly be achieved with this BEICP approach, including bio-safety, environmental, and geotechnical improvements. Notably, the BEICP bio-stabilization results presented in this paper demonstrate (i) higher rates of catalytic urease activity, (ii) a wider range of application with sand-plus-silt soil applications bearing low-plasticity properties, and (iii) the ability to retain higher levels of soil permeability after BEICP processing. Comparative BEICP versus MICP results for sand-only systems are presented, along with BEICP-based results for stabilized soil mixtures at 90:10 and 80:20 percentile sand:silt ratios. This BEICP method’s ability to obtain unconfined compressive strength results in excess of 1000 kPa with sand-plus-silt soil mixtures is particularly noteworthy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.