The appliance of sustainable development approach in building has urged construction industry to adopt proper measurements to protect environment and reduce residential building energy consumption and CO2 emissions. Thus, an increasing interest in alternative building materials has developed including the use of bio-based materials such as cob which is studied in this paper. In the previous work, many experimental and numerical studies have been carried out to characterize thermal behaviour of earth buildings, reduce its thermal conductivity and water content. In this paper, an experimental study is carried out to determine the thermal properties and energy performance of cob building. Cob samples within different soil and fiber contents are studied using an experimental set up instrumented with flux meters and micro-thermocouples in order to evaluate the local heat flux and thermal conductivity during stationary regime. The results are analysed and compared to deduce the performant mixes in terms of thermal behaviour while respecting the French thermal regulation. A static thermal simulation based on RT 2012 calculation method (the official French calculation method for the energy performance of new residential and commercial buildings according to France thermal regulation) is used to compare energy performance between conventional and cob building using the French climate data base .
This paper emphasizes the experimental and numerical study of new cob mixes used for insulation and load bearing wall elements. The experimental study provides complete datasets of thermal properties of the new walling materials, using cob with density ranging from 1107 kg/m3 to 1583 kg/m3 for structural walls and less than 700 kg m−3 for insulation walls. Various mixes of French soils and fibres (reed, wheat straw, hemp shiv, hemp straw, and flax straw) with different water contents are studied. The lowest average thermal conductivity is obtained for the structural cob mix prepared of 5% wheat straw and 31% of water content. The insulation mix, prepared with 25% reed and 31% water content, has the lowest thermal conductivity. Investigation of diffusivity, density, and heat capacity shows that, when thermal conductivity is lower than 0.4 W m−1 K−1, the decrease in cob density leads to better insulation values and higher heat capacity. Little variation is noticed regarding the density and heat capacity for cob mixes with thermal conductivity higher than 0.4 W m−1 K−1. Furthermore, the non-uniformity of local thermal conductivity and heat losses through the samples is due mainly to the non-uniform distribution of fibres inside the mixes inducing an increase in heat loss up to 50% for structural walls and 25% for insulation walls. Cob thermal properties are used in a comparative simulation case study of a typical house under French and UK climatic conditions. The energy performance of the conventional building is compared to a dual walled cob building, showing remarkable reduction in energy consumption as the cob walls, whilst maintaining comfortable indoor conditions without additional heating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.