Light matter interactions are greatly enhanced in twodimensional (2D) semiconductors because of strong excitonic effects. Many optoelectronic applications would benefit from creating stacks of atomically thin 2D semiconductors separated by insulating barrier layers, forming multiquantum-well structures. However, most 2D transition metal chalcogenide systems require serial stacking to create van der Waals multilayers. Hybrid metal organic chalcogenolates (MOChas) are self-assembling hybrid materials that combine multiquantum-well properties with scalable chemical synthesis and air stability. In this work, we use spatially resolved linear and nonlinear optical spectroscopies over a range of temperatures to study the strongly excitonic optical properties of mithrene, that is, silver benzeneselenolate, and its synthetic isostructures. We experimentally probe s-type bright excitons and p-type excitonic dark states formed in the quantum confined 2D inorganic monolayers of silver selenide with exciton binding energy up to ∼0.4 eV, matching recent theoretical predictions of the material class. We further show that mithrene's highly efficient blue photoluminescence, ultrafast exciton radiative dynamics, as well as flexible tunability of molecular structure and optical properties demonstrate great potential of MOChas for constructing optoelectronic and quantum excitonic devices.
The ability to collect uranium from seawater offers the potential for a nearly limitless fuel supply for nuclear energy. We evaluated the use of functionalized nanostructured sorbents for the collection and recovery of uranium from seawater. Extraction of trace minerals from seawater and brines is challenging due to the high ionic strength of seawater, low mineral concentrations, and fouling of surfaces over time. We demonstrate that rationally assembled sorbent materials that integrate high affinity surface chemistry and high surface area nanostructures into an application relevant micro/macro structure enables collection performance that far exceeds typical sorbent materials. High surface area nanostructured silica with surface chemistries composed of phosphonic acid, phosphonates, 3,4 hydroxypyridinone, and EDTA showed superior performance for uranium collection. A few phosphorous-based commercial resins, specifically Diphonix and Ln Resin, also performed well. We demonstrate an effective and environmentally benign method of stripping the uranium from the high affinity sorbents using inexpensive nontoxic carbonate solutions. The cyclic use of preferred sorbents and acidic reconditioning of materials was shown to improve performance. Composite thin films composed of the nanostructured sorbents and a porous polymer binder are shown to have excellent kinetics and good capacity while providing an effective processing configuration for trace mineral recovery from solutions. Initial work using the composite thin films shows significant improvements in processing capacity over the previously reported sorbent materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.