Capybaras (Hydrochoerus hydrochaeris), the world’s largest rodents, are distributed throughout South America. These wild herbivores are commonly found near water bodies and are well adapted to rural and urban areas. There is limited information on the viruses circulating through capybaras. This study aimed to expand the knowledge on the viral diversity associated with capybaras by sampling their faeces. Using a viral metagenomics approach, we identified diverse single-stranded DNA viruses in the capybara faeces sampled in the Distrito Federal, Brazil. A total of 148 complete genomes of viruses in the Microviridae family were identified. In addition, 14 genomoviruses (family Genomoviridae), a novel cyclovirus (family Circoviridae), and a smacovirus (family Smacoviridae) were identified. Also, 37 diverse viruses that cannot be assigned to known families and more broadly referred to as unclassified circular replication associated protein encoding single-stranded (CRESS) DNA viruses were identified. This study provides a snapshot of the viral diversity associated with capybaras that may be infectious to these animals or associated with their microbiota or diet.
The Sonoran Desert tortoise Gopherus morafkai is adapted to the desert, and plays an important ecological role in this environment. There is limited information on the viral diversity associated with tortoises (family Testudinidae), and to date no DNA virus has been identified associated with these animals. This study aimed to assess the diversity of DNA viruses associated with the Sonoran Desert tortoise by sampling their fecal matter. A viral metagenomics approach was used to identify the DNA viruses in fecal samples from wild Sonoran Desert tortoises in Arizona, USA. In total, 156 novel single-stranded DNA viruses were identified from 40 fecal samples. Those belonged to two known viral families, the Genomoviridae (n = 27) and Microviridae (n = 119). In addition, 10 genomes were recovered that belong to the unclassified group of circular-replication associated protein encoding single-stranded (CRESS) DNA virus and five circular molecules encoding viral-like proteins.
Over the last decade, arthropods have been shown to harbour a rich diversity of viruses. Through viral metagenomics a large diversity of single-stranded (ss) DNA viruses have been identified. Here we examine the ssDNA virome of the hematophagous New Zealand blackfly using viral metagenomics. Our investigation reveals a plethora of novel ssDNA viral genomes, some of which cluster in the viral families Genomoviridae (n = 9), Circoviridae (n = 1), and Microviridae (n = 108), others in putative families that, at present, remain unclassified (n = 20) and one DNA molecule that only encodes a replication associated protein. Among these novel viruses, two putative multi-component virus genomes were recovered, and these are most closely related to a Tongan flying fox faeces-associated multi-component virus. Given that the only other known multi-component circular replication-associated (Rep) protein encoding single-stranded (CRESS) DNA viruses infecting plants are in the families Geminiviridae (members of the genus Begomovirus) and Nanoviridae, it appears these are likely a new multi-component virus group which may be associated with animals. This study reiterates the diversity of ssDNA viruses in nature and in particular with the New Zealand blackflies.
Cactaceae comprise a diverse and iconic group of flowering plants which are almost exclusively indigenous to the New World. The wide variety of growth forms found amongst the cacti have led to the trafficking of many species throughout the world as ornamentals. Despite the evolution and physiological properties of these plants having been extensively studied, little research has focused on cactus-associated viral communities. While only single-stranded RNA viruses had ever been reported in cacti, here we report the discovery of cactus-infecting single-stranded DNA viruses. These viruses all apparently belong to a single divergent species of the family Geminiviridae and have been tentatively named Opuntia virus 1 (OpV1). A total of 79 apparently complete OpV1 genomes were recovered from 31 different cactus plants (belonging to 20 different cactus species from both the Cactoideae and Opuntioideae clades) and from nine cactus-feeding cochineal insects (Dactylopius sp.) sampled in the USA and Mexico. These 79 OpV1 genomes all share > 78.4% nucleotide identity with one another and < 64.9% identity with previously characterized geminiviruses. Collectively, the OpV1 genomes display evidence of frequent recombination, with some genomes displaying up to five recombinant regions. In one case, recombinant regions span ~40% of the genome. We demonstrate that an infectious clone of an OpV1 genome can replicate in Nicotiana benthamiana and Opuntia microdasys. In addition to expanding the inventory of viruses that are known to infect cacti, the OpV1 group is so distantly related to other known geminiviruses that it likely represents a new geminivirus genus. It remains to be determined whether, like its cactus hosts, its geographical distribution spans the globe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.