The shared nature of the network in today's multi-tenant datacenters implies that network performance for tenants can vary significantly. This applies to both production datacenters and cloud environments. Network performance variability hurts application performance which makes tenant costs unpredictable and causes provider revenue loss. Motivated by these factors, this paper makes the case for extending the tenant-provider interface to explicitly account for the network. We argue this can be achieved by providing tenants with a virtual network connecting their compute instances. To this effect, the key contribution of this paper is the design of virtual network abstractions that capture the trade-off between the performance guarantees offered to tenants, their costs and the provider revenue. To illustrate the feasibility of virtual networks, we develop Oktopus, a system that implements the proposed abstractions. Using realistic, large-scale simulations and an Oktopus deployment on a 25-node two-tier testbed, we demonstrate that the use of virtual networks yields significantly better and more predictable tenant performance. Further, using a simple pricing model, we find that the our abstractions can reduce tenant costs by up to 74% while maintaining provider revenue neutrality.
The soft real-time nature of large scale web applications in today's datacenters, combined with their distributed workflow, leads to deadlines being associated with the datacenter application traffic. A network flow is useful, and contributes to application throughput and operator revenue if, and only if, it completes within its deadline. Today's transport pro- tocols (TCP included), given their Internet origins, are agnostic to such flow deadlines. Instead, they strive to share network resources fairly. We show that this can hurt application performance. Motivated by these observations, and other (previously known) deficiencies of TCP in the datacenter environment, this paper presents the design and implementation of D3, a deadline-aware control protocol that is customized for the datacenter environment. D3 uses explicit rate control to apportion bandwidth according to flow deadlines. Evaluation from a 19-node, two-tier datacenter testbed shows that D3, even without any deadline information, easily outper- forms TCP in terms of short flow latency and burst tolerance. Further, by utilizing deadline information, D3 effectively doubles the peak load that the datacenter network cansupport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.