The extent to which Ca2+, Mg2+, Na+, K+ ions and pH independently mitigate acute copper toxicity for the cladoceran Daphnia magna was examined. Higher activities of Ca2+, Mg2+, and Na+ (but not K+) linearly increased the 48-h EC50 (as Cu2+ activity), supporting the concept of competitive binding of these ions and copper ions to toxic action or transport sites at the organism-water interface (e.g. fish gill, the biotic ligand). The increase of the EC50 (as Cu2+ activity) with increasing H+, however, seemed to suggest cotoxicity of CuOH+ rather than proton competition. Based on the biotic ligand model (BLM) concept, we developed a methodology to estimate stability constants for the binding of Cu2+, CuOH+, Ca2+, Mg2+, Na+, and H+ to the biotic ligand, solely based on toxicity data. Following values were obtained: log K(CuBL) = 8.02, log K(CuOHBL)= 7.45, log K(CaBL) = 3.47, log K(MgBL) = 3.58, log K(NaBL) = 3.19, and log K(HBL) approximately 5.4. Further, we calculated that on average 39% of the biotic ligand sites need to be occupied by copper to induce a 50% acute effect for D. magna after 48 h of exposure. Using the estimated constants, a BLM was developed that can predict acute copper toxicity for D. magna as a function of water characteristics. The presented methodology can easily be applied for BLM development for other organisms and metals. After validation with laboratory and natural waters (including DOC), the developed model will support efforts to improve the ecological relevance of presently applied risk assessment procedures.
Increased temperature and other environmental effects of global climate change (GCC) have documented impacts on many species (e.g., polar bears, amphibians, coral reefs) as well as on ecosystem processes and species interactions (e.g., the timing of predator–prey interactions). A challenge for ecotoxicologists is to predict how joint effects of climatic stress and toxicants measured at the individual level (e.g., reduced survival and reproduction) will be manifested at the population level (e.g., population growth rate, extinction risk) and community level (e.g., species richness, food-web structure). The authors discuss how population- and community-level responses to toxicants under GCC are likely to be influenced by various ecological mechanisms. Stress due to GCC may reduce the potential for resistance to and recovery from toxicant exposure. Long-term toxicant exposure can result in acquired tolerance to this stressor at the population or community level, but an associated cost of tolerance may be the reduced potential for tolerance to subsequent climatic stress (or vice versa). Moreover, GCC can induce large-scale shifts in community composition, which may affect the vulnerability of communities to other stressors. Ecological modeling based on species traits (representing life-history traits, population vulnerability, sensitivity to toxicants, and sensitivity to climate change) can be a promising approach for predicting combined impacts of GCC and toxicants on populations and communities. Environ. Toxicol. Chem. 2013;32:49–61. © 2012 SETAC
Cerium dioxide nanoparticles (CeO2 NPs) are increasingly being used as a catalyst in the automotive industry. Consequently, increasing amounts of CeO2 NPs are expected to enter the environment where their fate in and potential impacts are unknown. In this paper we describe the fate and effects of CeO2 NPs of three different sizes (14, 20, and 29 nm) in aquatic toxicity tests. In each standard test medium (pH 7.4) the CeO2 nanoparticles aggregated (mean aggregate size approximately 400 nm). Four test organisms covering three different trophic levels were investigated, i.e., the unicellular green alga Pseudokirchneriella subcapitata, two crustaceans: Daphnia magna and Thamnocephalus platyurus, and embryos of Danio rerio. No acute toxicity was observed for the two crustaceans and D. rerio embryos, up to test concentrations of 1000, 5000, and 200 mg/L, respectively. In contrast, significant chronic toxicity to P. subcapitata with 10% effect concentrations (EC10s) between 2.6 and 5.4 mg/L was observed. Food shortage resulted in chronic toxicity to D. magna, for wich EC10s of > or = 8.8 and < or = 20.0 mg/L were established. Chronic toxicity was found to increase with decreasing nominal particle diameter and the difference in toxicity could be explained by the difference in surface area. Using the data set, PNEC(aquatic)S > or = 0.052 and < or = 0.108 mg/L were derived. Further experiments were performed to explain the observed toxicity to the most sensitive organism, i.e., P. subcapitata. Toxicity could not be related to a direct effect of dissolved Ce or CeO2 NP uptake or adsorption, nor to an indirect effect of nutrient depletion (by sorption to NPs) or physical light restriction (through shading by the NPs). However, observed clustering of NPs around algal cells may locally cause a direct or indirect effect.
Bioavailability models predicting acute and/or chronic zinc toxicity to a green alga (Pseudokirchneriella subcapitata), a crustacean (Daphnia magna), and a fish (Oncorhynchus mykiss) were evaluated in a series of experiments with spiked natural surface waters. The eight selected freshwater samples had varying levels of bioavailability modifying parameters: pH (5.7-8.4), dissolved organic carbon (DOC, 2.48-22.9 mg/L), Ca (1.5-80 mg/L), Mg (0.79-18 mg/L), and Na (3.8-120 mg/L). In those waters, chronic zinc toxicity (expressed as 10% effective concentrations [EC10]) varied up to 20-fold for the alga (72-h EC10 from 27.3 to 563 microg Zn/L), and approximately sixfold for the crustacean (21-d EC10 from 59.2 to 387 microg Zn/L), and fivefold for the fish (30-d LC10, lethal concentration for 10% of the organisms, from 185 to 902 microg Zn/L). For P. subcapitata a refined bioavailability model was developed by linking an empirical equation, which predicts toxicity expressed as free Zn2+ activity as a function of pH, to the geochemical speciation model WHAM/Model V. This model and previously developed acute and/or chronic biotic ligand models for D. magna and 0. mykiss generally predicted most effect concentrations by an error of less than a factor of two. In waters with pH > 8, however, chronic toxicity to D. magna was underestimated by a factor 3 to 4. Based on the results of this validation exercise and earlier research, we determined applicability ranges for pH (6-8) and Ca (5-160 mg/L) in which all three developed models are valid. Within these ranges, all three models may be considered useful tools for taking into account bioavailability in regulatory assessments of zinc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.