Abstract.A model is presented that combines the traditional approach to transpression with the thin viscous sheet approximation of the lithosphere, to study deformation in front of an obliquely colliding indenter. The model produces a zone dominated by lateral simple shear (orogen parallel transcurrent movements) close to the indenter and a zone of dominant pure shear (orogen perpendicular pure shear/thrusting regions) further away from the indenting boundary. The relative width of simple shear dominated zone with respect to the more distant pure shear domain in terms of the angle of convergence is discussed. The possibility of development of transcurrent faults in front of an indenting plate is enhanced by the reactivation of fabric anisotropy created progressively during indentation.
<p>In the easternmost part of the European Variscan collisional belt, the Bohemian Massif, strongly metamorphosed felsic rocks crop out at several locations in a current distance of up to several hundreds of kilometers from the supposed contact of the subducting and overriding plates. These rocks were interpreted to originate from the subducting plate (now the Saxothuringian domain), which means that the orogenic root (the Moldanubian domain) consists of rocks that originate from both upper and lower plate. More specifically, the root domain is composed of (U)HP granulites and orthogneiss, garnet peridotites, eclogites and ultra-potassic plutons that alternate with the less metamorphosed rocks of the upper plate.</p><p>Such a process of subduction and emplacement of the subducted crust into the upper plate is called relamination. In order to better constrain the dynamics of relamination, we set up a numerical thermal-mechanical model and compare the modeling results with the data from the Bohemian Massif. The model simulates oceanic and continental subduction and takes into account non-linear visco-plastic rheology, percolation of fluids, melting and melt extraction. For different parameter values, the models show different styles of behavior, namely (i) exhumation of the subducted crust along the plate interface, and (ii) flow of the subducted crust beneath the upper plate and then incorporation into its crust (i.e. relamination).</p><p>In the former case, the material records heterogeneous peak metamorphism sampling the conditions along the subduction zone, and cooling during decompression. Similar features are typical for the metamorphic complex in the Saxothuringian domain of the Bohemian Massif.</p><p>In the latter case, the typical feature is the development of diapirs that grow from the subducted continental crust, pierce the overlying lithosphere and intrude into the middle crust of the upper plate. We show that growth of such trans-lithospheric diapirs results in a similar rock assemblage as observed in the orogenic root in the Bohemian Massif. The pressure-temperature-time paths obtained in the modeled diapirs mimic those of the Moldanubian granulites. The flow of crustal material through the mantle wedge results into mixing, hydration of the mantle and melting of both materials. Emplacement of the resulting melt into crust can explain formation of the Moldanubian ultra-potassic plutons.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.