Rationale: The HDL-mediated stimulation of cellular cholesterol efflux initiates the reverse cholesterol pathway from macrophages (m-RCT), which ends in the fecal excretion of macrophage-derived unesterified cholesterol (UC). Early studies established that LDL particles could act as efficient intermediate acceptors of cellular-derived UC, thereby preventing the saturation of HDL particles and facilitating their cholesterol efflux capacity (CEC). However, the capacity of LDL to act as a plasma cholesterol reservoir and its potential impact in supporting the m-RCT pathway in vivo both remain unknown. Objective: We investigated LDL contributions to the m-RCT pathway in hypercholesterolemic mice. Methods and Results: Macrophage cholesterol efflux induced either in vitro by LDL added to the culture media either alone or together with HDL, or ex vivo by plasma derived from subjects with familial hypercholesterolemia (FH), was assessed. In vivo, m-RCT was evaluated in mouse models of hypercholesterolemia that were naturally deficient in CETP and fed a Western-type diet. LDL induced the efflux of radiolabeled UC from cultured macrophages, and, in the simultaneous presence of HDL, a rapid transfer of the radiolabeled UC from HDL to LDL occurred. However, LDL did not exert a synergistic effect on HDL CEC in the FH plasma. The m-RCT rates of the LDL receptor (LDLr)-KO, LDLr-KO/APOB100, and PCSK9-overexpressing mice were all significantly reduced relative to the wild-type mice. In contrast, m-RCT remained unchanged in human APOB100 transgenic mice with fully functional LDLr, despite increased levels of plasma APOB-containing lipoproteins. Conclusions: Hepatic LDLr plays a critical role in the flow of macrophage-derived UC to feces, while the plasma increase of APOB-containing lipoproteins is unable to stimulate m-RCT. The results indicate that, besides the major HDL-dependent m-RCT pathway via SR-BI to the liver, a CETP-independent m-RCT path exists, in which LDL mediates the transfer of cholesterol from macrophages to feces.
Scope Interventions that boost NAD+ availability are of potential therapeutic interest for obesity treatment. The potential of nicotinamide (NAM), the amide form of vitamin B3 and a physiological precursor of nicotinamide adenine dinucleotide (NAD)+, in preventing weight gain has not previously been studied in vivo. Other NAD+ precursors have been shown to decrease weight gain; however, their impact on adipose tissue is not addressed. Methods and results Two doses of NAM (high dose: 1% and low dose: 0.25%) are given by drinking water to C57BL/6J male mice, starting at the same time as the high‐fat diet feeding. NAM supplementation protects against diet‐induced obesity by augmenting global body energy expenditure in C57BL/6J male mice. The manipulation markedly alters adipose morphology and metabolism, particularly in inguinal (i) white adipose tissue (iWAT). An increased number of brown and beige adipocyte clusters, protein abundance of uncoupling protein 1 (UCP1), mitochondrial activity, adipose NAD+, and phosphorylated AMP‐activated protein kinase (P‐AMPK) levels are observed in the iWAT of treated mice. Notably, a significant improvement in hepatic steatosis, inflammation, and glucose tolerance is also observed in NAM high‐dose treated mice. Conclusion NAM influences whole‐body energy expenditure by driving changes in the adipose phenotype. Thus, NAM is an attractive potential treatment for preventing obesity and associated complications.
Sphingolipids are key signaling molecules involved in the regulation of cell physiology. These species are found in tissues and in circulation. Although they only constitute a small fraction in lipid composition of circulating lipoproteins, their concentration in plasma and distribution among plasma lipoproteins appears distorted under adverse cardiometabolic conditions such as diabetes mellitus. Sphingosine-1-phosphate (S1P), one of their main representatives, is involved in regulating cardiomyocyte homeostasis in different models of experimental cardiomyopathy. Cardiomyopathy is a common complication of diabetes mellitus and represents a main risk factor for heart failure. Notably, plasma concentration of S1P, particularly high-density lipoprotein (HDL)-bound S1P, may be decreased in patients with diabetes mellitus, and hence, inversely related to cardiac alterations. Despite this, little attention has been given to the circulating levels of either total S1P or HDL-bound S1P as potential biomarkers of diabetic cardiomyopathy. Thus, this review will focus on the potential role of HDL-bound S1P as a circulating biomarker in the diagnosis of main cardiometabolic complications frequently associated with systemic metabolic syndromes with impaired insulin signaling. Given the bioactive nature of these molecules, we also evaluated its potential of HDL-bound S1P-raising strategies for the treatment of cardiometabolic disease.
The antinociceptive effects of the carbon monoxide-releasing molecule tricarbonyldichlororuthenium (II) dimer (CORM-2) during chronic pain are well documented, but most of its possible side-effects remain poorly understood. In this work, we examine the impact of CORM-2 treatment on the lipoprotein profile and two main atheroprotective functions attributed to high-density lipoprotein (HDL) in a mouse model of type 1 diabetes while analyzing the effect of this drug on diabetic neuropathy. Streptozotocin (Stz)-induced diabetic mice treated with CORM-2 (Stz-CORM-2) or vehicle (Stz-vehicle) were used to evaluate the effect of this drug on the modulation of painful diabetic neuropathy using nociceptive behavioral tests. Plasma and tissue samples were used for chemical and functional analyses, as appropriate. Two main antiatherogenic properties of HDL, i.e., the ability of HDL to protect low-density lipoprotein (LDL) from oxidation and to promote reverse cholesterol transport from macrophages to the liver and feces in vivo (m-RCT), were also assessed. Stz-induced diabetic mice displayed hyperglycemia, dyslipidemia and pain hypersensitivity. The administration of 10 mg/kg CORM-2 during five consecutive days inhibited allodynia and hyperalgesia and significantly ameliorated spinal cord markers (Cybb and Bdkrb1expression) of neuropathic pain in Stz mice, but it did not reduce the combined dyslipidemia shown in Stz-treated mice. Its administration to Stz-treated mice led to a significant increase in the plasma levels of cholesterol (∼ 1.4-fold vs. Ctrl, ∼ 1.3- fold vs. Stz-vehicle; p < 0.05) and was attributed to significant elevations in both non-HDL (∼ 1.8-fold vs. Ctrl; ∼ 1.6-fold vs. Stz-vehicle; p < 0.05) and HDL cholesterol (∼ 1.3-fold vs. Ctrl, ∼ 1.2-fold vs. Stz-vehicle; p < 0.05). The increased HDL in plasma was not accompanied by a commensurate elevation in m-RCT in Stz-CORM-2 compared to Stz-vehicle mice; instead, it was worsened as revealed by decreased [3H]-tracer trafficking into the feces in vivo. Furthermore, the HDL-mediated protection against LDL oxidation ex vivo shown by the HDL isolated from Stz-CORM-2 mice did not differ from that obtained in Stz-vehicle mice. In conclusion, the antinociceptive effects produced by a high dose of CORM-2 were accompanied by antioxidative effects but were without favorable effects on the dyslipidemia manifested in diabetic mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.