We report detailed functional analyses and genotype-phenotype correlations in 392 individuals carrying disease-causing variants in SCN8A, encoding the voltage-gated Na+ channel NaV1.6, with the aim of describing clinical phenotypes related to functional effects. Six different clinical subgroups could be identified: 1) Benign familial infantile epilepsy (BFIE) (n = 15, normal cognition, treatable seizures), 2) intermediate epilepsy (n = 33, mild ID, partially pharmaco-responsive), 3) developmental and epileptic encephalopathy (DEE, n = 177, severe ID, majority pharmaco-resistant), 4) generalized epilepsy (n = 20, mild to moderate ID, frequently with absence seizures), 5) unclassifiable epilepsy (n = 127), and 6) neurodevelopmental disorder without epilepsy (n = 20, mild to moderate ID). Groups 1–3 presented with focal or multifocal seizures (median age of onset: four months) and focal epileptiform discharges, whereas the onset of seizures in group 4 was later (median: 42 months) with generalized epileptiform discharges. We performed functional studies expressing missense variants in ND7/23 neuroblastoma cells and primary neuronal cultures using recombinant tetrodotoxin-insensitive human NaV1.6 channels and whole-cell patch-clamping. Two variants causing DEE showed a strong gain-of-function (GOF, hyperpolarising shift of steady-state activation, strongly increased neuronal firing rate), and one variant causing BFIE or intermediate epilepsy showed a mild GOF (defective fast inactivation, less increased firing). In contrast, all three variants causing generalized epilepsy induced a loss-of-function (LOF, reduced current amplitudes, depolarising shift of steady-state activation, reduced neuronal firing). Including previous studies, functional effects were known for 170 individuals. All 136 individuals carrying a functionally tested GOF variant had either focal (97, groups 1–3), or unclassifiable epilepsy (39), whereas 34 with a LOF variant had either generalized (14), no (11) or unclassifiable (6) epilepsy; only three had DEE. Computational modeling in the GOF group revealed a significant correlation between the severity of the electrophysiological and clinical phenotypes. GOF variant carriers responded significantly better to sodium channel blockers (SCBs) than to other anti-seizure medications, and the same applied for all individuals of groups 1–3. In conclusion, our data reveal clear genotype-phenotype correlations between age at seizure onset, type of epilepsy and gain- or loss-of-function effects of SCN8A variants. Generalized epilepsy with absence seizures is the main epilepsy phenotype of LOF variant carriers and the extent of the electrophysiological dysfunction of the GOF variants is a main determinant of the severity of the clinical phenotype in focal epilepsies. Our pharmacological data indicate that SCBs present a treatment option in SCN8A-related focal epilepsy with onset in the first year of life.
Chromosomal microarray analysis (CMA) is standard of care, first-tier clinical testing for detection of genomic copy number variation among patients with developmental disabilities. Although diagnostic yield is higher than traditional cytogenetic testing, management impact has not been well studied. We surveyed genetic services providers regarding CMA ordering practices and perceptions about reimbursement. Lack of insurance coverage because of perceived lack of clinical utility was cited among the most frequent reasons why CMA was not ordered when warranted. We compiled a list of genomic regions where haploinsufficiency or triplosensitivity cause genetic conditions with documented management recommendations, estimating that at least 146 conditions potentially diagnosable by CMA testing have published literature supporting specific clinical management implications. Comparison with an existing clinical CMA database to determine the proportion of cases involving these regions showed that CMA diagnoses associated with such recommendations are found in approximately 7% of all cases (n = 28,526). We conclude that CMA impacts clinical management at a rate similar to other genetic tests for which insurance coverage is more readily approved. The information presented here can be used to address barriers that continue to contribute to inequities in patient access and care in regard to CMA testing.
IMPORTANCE Cerebral palsy is a common neurodevelopmental disorder affecting movement and posture that often co-occurs with other neurodevelopmental disorders. Individual cases of cerebral palsy are often attributed to birth asphyxia; however, recent studies indicate that asphyxia accounts for less than 10% of cerebral palsy cases.OBJECTIVE To determine the molecular diagnostic yield of exome sequencing (prevalence of pathogenic and likely pathogenic variants) in individuals with cerebral palsy. DESIGN, SETTING, AND PARTICIPANTSA retrospective cohort study of patients with cerebral palsy that included a clinical laboratory referral cohort with data accrued between 2012 and 2018 and a health care-based cohort with data accrued between 2007 and 2017.EXPOSURES Exome sequencing with copy number variant detection. MAIN OUTCOMES AND MEASURESThe primary outcome was the molecular diagnostic yield of exome sequencing. RESULTS Among 1345 patients from the clinical laboratory referral cohort, the median age was 8.8 years (interquartile range, 4.4-14.7 years; range, 0.1-66 years) and 601 (45%) were female. Among 181 patients in the health care-based cohort, the median age was 41.9 years (interquartile range, 28.0-59.6 years; range, 4.8-89 years) and 96 (53%) were female. The molecular diagnostic yield of exome sequencing was 32.7% (95% CI, 30.2%-35.2%) in the clinical laboratory referral cohort and 10.5% (95% CI, 6.0%-15.0%) in the health care-based cohort. The molecular diagnostic yield ranged from 11.2% (95% CI, 6.4%-16.2%) for patients without intellectual disability, epilepsy, or autism spectrum disorder to 32.9% (95% CI, 25.7%-40.1%) for patients with all 3 comorbidities. Pathogenic and likely pathogenic variants were identified in 229 genes (29.5% of 1526 patients); 86 genes were mutated in 2 or more patients (20.1% of 1526 patients) and 10 genes with mutations were independently identified in both cohorts (2.9% of 1526 patients).CONCLUSIONS AND RELEVANCE Among 2 cohorts of patients with cerebral palsy who underwent exome sequencing, the prevalence of pathogenic and likely pathogenic variants was 32.7% in a cohort that predominantly consisted of pediatric patients and 10.5% in a cohort that predominantly consisted of adult patients. Further research is needed to understand the clinical implications of these findings.
IMPORTANCE Population screening for medically relevant genomic variants that cause diseases such as hereditary cancer and cardiovascular disorders is increasing to facilitate early disease detection or prevention. Neuropsychiatric disorders (NPDs) are common, complex disorders with clear genetic causes; yet, access to genetic diagnosis is limited. We explored whether inclusion of NPD in population-based genomic screening programs is warranted by assessing 3 key factors: prevalence, penetrance, and personal utility. OBJECTIVE To evaluate the suitability of including pathogenic copy number variants (CNVs) associated with NPD in population screening by determining their prevalence and penetrance and exploring the personal utility of disclosing results. DESIGN, SETTING, AND PARTICIPANTS In this cohort study, the frequency of 31 NPD CNVs was determined in patient-participants via exome data. Associated clinical phenotypes were assessed using linked electronic health records. Nine CNVs were selected for disclosure by licensed genetic counselors, and participants' psychosocial reactions were evaluated using a mixed-methods approach. A primarily adult population receiving medical care at Geisinger, a large integrated health care system in the United States with the only population-based genomic screening program approved for medically relevant results disclosure, was included. The cohort was identified from the Geisinger MyCode Community Health Initiative. Exome and linked electronic health record data were available for this cohort, which was recruited
Heterozygous loss-of-function (LOF) SMAD4 mutations are associated with juvenile polyposis syndrome (JP) and hereditary hemorrhagic telangiectasia (HHT). Some carriers exhibit symptoms of both conditions, leading to the name JP-HHT syndrome. Three families have been reported with connective tissue abnormalities. In order to better understand the spectrum and extent of clinical findings in SMAD4 carriers, medical records of 34 patients (20 families) from five clinical practices were reviewed. Twenty-one percent (7/34) had features suggesting a connective tissue defect: enlarged aortic root (n=3), aortic and mitral insufficiency (n=2), aortic dissection (n=1), retinal detachment (n=1), brain aneurysms (n=1), lax skin and joints (n=1). JP-specific findings were almost uniformly present but variable. Ninety-seven percent had colon polyps that were generally pan-colonic and of variable histology and number. Forty-eight percent (15/31) had extensive gastric polyposis. HHT features were documented in 76% including epistaxis (19/31, 61%), mucocutaneous telangiectases (15/31, 48%), liver arteriovenous malformation (AVM) (6/16, 38%), brain AVM (1/26, 4%), pulmonary AVM (9/17, 53%), and intrapulmonary shunting (14/23, 61%). SMAD4 carriers should be managed for JP and HHT, since symptoms of both are likely yet unpredictable. Connective tissue abnormalities are an emerging component of JP-HHT syndrome, and larger studies are needed to understand these manifestations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.