Key Points Sirolimus monotherapy is a safe and effective steroid-sparing agent, improving autoimmune cytopenias in highly refractory patients. Sirolimus is particularly active in ALPS and should be an early therapy option for patients who require chronic therapy.
As a consequence of acquired or intrinsic disease resistance, the prognosis for patients with relapsed or refractory T-cell acute lymphoblastic leukemia (T-ALL) is dismal. Novel, less toxic drugs are clearly needed. One of the most promising emerging therapeutic strategies for cancer treatment is targeted immunotherapy. Immune therapies have improved outcomes for patients with other hematologic malignancies including B-cell ALL; however no immune therapy has been successfully developed for T-ALL. We hypothesize targeting CD38 will be effective against T-ALL. We demonstrate that blasts from patients with T-ALL have robust surface CD38 surface expression and that this expression remains stable after exposure to multiagent chemotherapy. CD38 is expressed at very low levels on normal lymphoid and myeloid cells and on a few tissues of nonhematopoietic origin, suggesting that CD38 may be an ideal target. Daratumumab is a human immunoglobulin G1κ monoclonal antibody that binds CD38, and has been demonstrated to be safe and effective in patients with refractory multiple myeloma. We tested daratumumab in a large panel of T-ALL patient-derived xenografts (PDX) and found striking efficacy in 14 of 15 different PDX. These data suggest that daratumumab is a promising novel therapy for pediatric T-ALL patients.
• Genetic or pharmacologic inhibition of MEK4 and MEK2 enhances prednisoloneinduced cell death in ALL models.• MAPK signaling cascades are activated at relapse compared to diagnosis in ALL samples and have enhanced response to MEK inhibition.The outcome for pediatric acute lymphoblastic leukemia (ALL) patients who relapse is dismal. A hallmark of relapsed disease is acquired resistance to multiple chemotherapeutic agents, particularly glucocorticoids. In this study, we performed a genome-scale short hairpin RNA screen to identify mediators of prednisolone sensitivity in ALL cell lines. The incorporation of these data with an integrated analysis of relapse-specific genetic and epigenetic changes allowed us to identify the mitogen-activated protein kinase (MAPK) pathway as a mediator of prednisolone resistance in pediatric ALL. We show that knockdown of the specific MAPK pathway members MEK2 and MEK4 increased sensitivity to prednisolone through distinct mechanisms. MEK4 knockdown increased sensitivity specifically to prednisolone by increasing the levels of the glucocorticoid receptor. MEK2 knockdown increased sensitivity to all chemotherapy agents tested by increasing the levels of p53. Furthermore, we demonstrate that inhibition of MEK1/2 with trametinib increased sensitivity of ALL cells and primary samples to chemotherapy in vitro and in vivo. To confirm a role for MAPK signaling in patients with relapsed ALL, we measured the activation of the MEK1/2 target ERK in matched diagnosis-relapse primary samples and observed increased phosphorylated ERK levels at relapse. Furthermore, relapse samples have an enhanced response to MEK inhibition compared to matched diagnosis samples in xenograft models. Together, our data indicate that inhibition of the MAPK pathway increases chemosensitivity to glucocorticoids and possibly other agents and that the MAPK pathway is an attractive target for prevention and/or treatment of relapsed disease. (Blood. 2015;126(19):2202-2212
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.