In the regulatory context, bioaccumulation assessment is often hampered by substantial data uncertainty as well as by the poorly understood differences often observed between results from laboratory and field bioaccumulation studies. Bioaccumulation is a complex, multifaceted process, which calls for accurate error analysis. Yet, attempts to quantify and compare propagation of error in bioaccumulation metrics across species and chemicals are rare. Here, we quantitatively assessed the combined influence of physicochemical, physiological, ecological, and environmental parameters known to affect bioaccumulation for 4 species and 2 chemicals, to assess whether uncertainty in these factors can explain the observed differences among laboratory and field studies. The organisms evaluated in simulations including mayfly larvae, deposit-feeding polychaetes, yellow perch, and little owl represented a range of ecological conditions and biotransformation capacity. The chemicals, pyrene and the polychlorinated biphenyl congener PCB-153, represented medium and highly hydrophobic chemicals with different susceptibilities to biotransformation. An existing state of the art probabilistic bioaccumulation model was improved by accounting for bioavailability and absorption efficiency limitations, due to the presence of black carbon in sediment, and was used for probabilistic modeling of variability and propagation of error. Results showed that at lower trophic levels (mayfly and polychaete), variability in bioaccumulation was mainly driven by sediment exposure, sediment composition and chemical partitioning to sediment components, which was in turn dominated by the influence of black carbon. At higher trophic levels (yellow perch and the little owl), food web structure (i.e., diet composition and abundance) and chemical concentration in the diet became more important particularly for the most persistent compound, PCB-153. These results suggest that variation in bioaccumulation assessment is reduced most by improved identification of food sources as well as by accounting for the chemical bioavailability in food components. Improvements in the accuracy of aqueous exposure appear to be less relevant when applied to moderate to highly hydrophobic compounds, because this route contributes only marginally to total uptake. The determination of chemical bioavailability and the increase in understanding and qualifying the role of sediment components (black carbon, labile organic matter, and the like) on chemical absorption efficiencies has been identified as a key next steps.
In the United States, new regulatory restrictions have been placed on the use of some second-generation anticoagulant rodenticides. This action may be offset by expanded use of first-generation compounds (e.g., diphacinone; DPN). Single-day acute oral exposure of adult Eastern screech-owls (Megascops asio) to DPN evoked overt signs of intoxication, coagulopathy, histopathological lesions (e.g., hemorrhage, hepatocellular vacuolation), and/or lethality at doses as low as 130 mg/kg body weight, although there was no dose-response relation. However, this single-day exposure protocol does not mimic the multiple-day field exposures required to cause mortality in rodent pest species and non-target birds and mammals. In 7-day feeding trials, similar toxic effects were observed in owls fed diets containing 2.15, 9.55 or 22.6 ppm DPN, but at a small fraction (<5%) of the acute oral dose. In the dietary trial, the average lowest-observed-adverse-effect-level for prolonged clotting time was 1.68 mg DPN/kg owl/week (0.24 mg/kg owl/day; 0.049 mg/owl/day) and the lowest lethal dose was 5.75 mg DPN/kg owl/week (0.82 mg/kg owl/day). In this feeding trial, DPN concentration in liver ranged from 0.473 to 2.21 μg/g wet weight, and was directly related to the daily and cumulative dose consumed by each owl. A probabilistic risk assessment indicated that daily exposure to as little as 3-5 g of liver from DPN-poisoned rodents for 7 days could result in prolonged clotting time in the endangered Hawaiian short-eared owl (Asio flammeus sandwichensis) and Hawaiian hawk (Buteo solitarius), and daily exposure to greater quantities (9-13 g of liver) could result in low-level mortality. These findings can assist natural resource managers in weighing the costs and benefits of anticoagulant rodenticide use in pest control and eradication programs.
Substances of unknown or variable composition, complex reaction products, or biological materials (UVCBs) pose unique risk assessment challenges to regulators and to product registrants. These substances can contain many constituents, sometimes partially unknown and/or variable, depending on fluctuations in their source material and/or manufacturing process. International regulatory agencies have highlighted the difficulties in characterizing UVCBs and assessing their toxicity and environmental fate. Several industrial sectors have attempted to address these issues by developing frameworks and characterization methods. Based on the output of a 2016 workshop, this critical review examines current practices for UVCB risk assessment and reveals a need for a multipronged and transparent approach integrating whole-substance and constituent-based information. In silico tools or empirical measurements can provide information on discrete and/or blocks of UVCB constituents with similar hazard properties. Read-across and/or wholesubstance toxicity and fate testing using adapted emerging methods can provide whole-substance information. Continued collaboration of stakeholders representing government, industry, and academia will facilitate the development of practical testing strategies and guidelines for addressing regulatory requirements for UVCBs.
We conducted a factorial experiment to compare sublethal and lethal responses of juvenile snapping turtles exposed maternally and/or through the diet to polychlorinated biphenyls (PCBs) over 14 months posthatching. Maternal exposure did not affect embryonic development or hatching success. Thyrosomatic indices were not influenced by treatments, although hepatosomatic indices were lower in animals having been exposed to PCBs maternally relative to those having been exposed both maternally and via the diet. Dietary PCB exposure reduced metabolic rates of juveniles in two of three assays conducted. Approximately eight months after hatching, high rates of mortality began to emerge in individuals having been exposed maternally to PCBs, and mortality rate correlated with [PCB](total) in eggs. Prior to death, individuals that died experienced lower growth rates than those that survived, suggesting chronic effects prior to death. By 14 months posthatching, only 40% of juveniles derived from females in the contaminated area had survived, compared to 90% from the reference area. Such latent effects of maternally derived contaminants suggest that assessments of environmental impacts based upon shorter-term studies may provide very conservative estimates of the severity of effects, as they cannot capture responses that may emerge later in the life cycle.
We conducted field studies over three years to assess body burdens and maternal transfer of polychlorinated biphenyls (PCBs) as well as indices of sexual dimorphism in snapping turtles (Chelydra serpentina) of the upper Hudson River (NY, USA.) We collected adult turtles in areas known to be contaminated with PCBs and in nearby reference areas for measurement of body size, precloacal length, and penis size. We analyzed PCB concentrations in eggs collected over three years and in whole blood from adults in one year. Total PCB concentrations (mean +/- standard error) in eggs were 2,800 +/- 520 and 59 +/- 5 ng/g wet weight in the contaminated area and the reference area, respectively. Eggs from the contaminated area were significantly enriched in tri-, penta-, and hepta-PCBs relative to the reference area. Blood from adults in the contaminated area averaged 475 +/- 200 and 125 +/- 34 ng/g wet weight for males and females, respectively. In the reference area, blood PCB concentrations were 7 +/- 3 and 4 +/- 1 ng/g wet weight for males and females, respectively. Significant positive relationships were found between carapace length and blood PCB concentration for both sexes in the contaminated area; however, only a marginal relationship was found between female carapace length and concentration of PCBs in their eggs. Our results suggest that PCB contamination of the upper Hudson River presents risks of establishing high body burdens and of maternal transfer of PCBs to eggs, although our measures of gross morphology revealed no discernable expression of abnormal sexual development or reproduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.