Blood coagulation can be initiated when factor VII or VIIa, a plasma protease, binds to its essential cofactor, tissue factor (TF), and proteolytically activates factors IX and X, triggering a cascade of events which eventually leads to the formation of thrombin and a fibrin clot. Plasma contains a lipoprotein-associated coagulation inhibitor (LACI) which inhibits activated factor X (Xa) directly and, in a Xa-dependent way, inhibits VII(a)/TF activity, presumably by forming a quaternary Xa/LACI/VII(a)/TF complex. Sequence analysis of complementary DNA clones has shown that LACI contains three tandemly repeated Kunitz-type serine protease inhibitory domains. To investigate the relationship between these Kunitz structures and LACI function, we have used site-directed mutagenesis to produce altered forms of LACI in which the residue at the active-site cleft of each Kunitz domain has been individually changed. The second Kunitz domain is required for efficient binding and inhibition of Xa, and both Kunitz domains 1 and 2 are required for the inhibition of VIIa/TF activity; but alteration of the active-site residue of the third Kunitz domain has no significant effect on either function. We propose that in the putative inhibitory complex, Kunitz domain 1 is bound to the active site of VII(a)/TF and that Kunitz domain 2 is bound to Xa's active site.
Tissue factor pathway inhibitor (TFPI) is a multivalent Kunitz-type protease inhibitor that binds to and inactivates factor Xa directly, and in a factor Xa-dependent fashion inhibits the factor VIIa/tissue factor catalytic complex. TFPI is a slow, tight-binding, competitive, and reversible inhibitor of factor Xa, in which the formation of an initial encounter complex between TFPI and factor Xa is followed by slow isomerization to a final, tightened complex. Wild-type recombinant TFPI (rTFPI), expressed in mouse C127 cells, separates into two forms on heparin-agarose chromatography that elute at 0.3 mol/L and 0.6 mol/L NaCl. Western blot analysis shows that both forms contain the N- terminus of full-length TFPI, but only rTFPI(0.6) is recognized by an antibody directed against the C-terminus. rTFPI(0.3) and rTFPI(0.6) inhibit factor Xa with 1:1 stoichiometry and inhibit factor VIIa/tissue factor equally in an endpoint-type assay. However, rTFPI(0.6) is a more potent inhibitor than rTFPI(0.3) of coagulation in normal plasma induced by either factor Xa or tissue factor. The initial inhibition of factor Xa (less than 5 seconds) produced by rTFPI(0.6) is several-fold greater than that produced by rTFPI(0.3), presumably reflecting a lower Ki of the immediate encounter complex between factor Xa and TFPI. The differential effect of these forms of TFPI on tissue factor-induced coagulation in normal plasma appears to be directly related to their ability to inhibit factor Xa. To confirm the role of the C-terminal region of TFPI in optimal factor Xa inhibition, a carboxy-terminal mutant of rTFPI, which is truncated after leucine 252 and thus lacks the basic sequence K T K R K R K K Q R V K (residues 254–265), was expressed in C127 cells. This form of rTFPI elutes from heparin-agarose at 0.28 mol/L NaCl and inhibits factor Xa at a rate that is slower than rTFPI(0.3). The Ki(final)s for factor Xa inhibition by rTFPI(0.6), rTFPI(0.3), and rTFPI1–252 are 3.1 +/- 0.6, 19.6 +/- 0.8, and 19.6 +/- 3.0 pmol/L, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.