Geomycology can be simply defined as 'the scientific study of the roles of fungi in processes of fundamental importance to geology' and the biogeochemical importance of fungi is significant in several key areas. These include nutrient and element cycling, rock and mineral transformations, bioweathering, mycogenic biomineral formation and interactions of fungi with clay minerals and metals. Such processes can occur in aquatic and terrestrial habitats, but it is in the terrestrial environment where fungi probably have the greatest geochemical influence. Of special significance are the mutualistic relationships with phototrophic organisms, lichens (algae, cyanobacteria) and mycorrhizas (plants). Central to many geomycological processes are transformations of metals and minerals, and fungi possess a variety of properties that can effect changes in metal speciation, toxicity and mobility, as well as mineral formation or mineral dissolution or deterioration. Some fungal transformations have beneficial applications in environmental biotechnology, e.g. in metal and radionuclide leaching, recovery, detoxification and bioremediation, and in the production or deposition of biominerals or metallic elements with catalytic or other properties. Metal and mineral transformations may also result in adverse effects when these processes result in spoilage and destruction of natural and synthetic materials, rock and mineral-based building materials (e.g. concrete), acid mine drainage and associated metal pollution, biocorrosion of metals, alloys and related substances, and adverse effects on radionuclide speciation, mobility and containment. The ubiquity and importance of fungi in biosphere processes underlines the importance of geomycology as an interdisciplinary subject area within microbiology and mycology.
Individuals from various disciplines can come to consensus about competencies that graduates should achieve. Such consensus is the first step in the direction of implementing a curriculum based on interdisciplinary competencies.
There were no significant differences between the intervention and control groups in meeting patient preferences, metabolic status, and complication rates. The results of this study show that linking pertinent published evidence to actual practice data can support the implementation of practice recommendations and influence the selection of dialysis treatment for new patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.