In attempts to develop a method of introducing DNA into Pyrococcus furiosus, we discovered a variant within the wild-type population that is naturally and efficiently competent for DNA uptake. A pyrF gene deletion mutant was constructed in the genome, and the combined transformation and recombination frequencies of this strain allowed marker replacement by direct selection using linear DNA. We have demonstrated the use of this strain, designated COM1, for genetic manipulation. Using genetic selections and counterselections based on uracil biosynthesis, we generated single-and double-deletion mutants of the two gene clusters that encode the two cytoplasmic hydrogenases. The COM1 strain will provide the basis for the development of more sophisticated genetic tools allowing the study and metabolic engineering of this important hyperthermophile.It would be difficult to overestimate the contribution of genetic manipulation to the study of any biological system, and it is an essential tool for the metabolic engineering of biosynthetic and substrate utilization pathways. This is particularly true for the archaea since, in spite of their environmental and industrial importance, coupled with their unique molecular features, much remains to be learned about their biology (2). The marine hyperthermophilic anaerobe Pyrococcus furiosus is of special interest not only for its ability to grow optimally at 100°C and the implications of this trait for its biology but also for industrial applications of its enzymes, as well as its capacity to produce hydrogen efficiently (4, 13, 44). The ability to apply genetic analyses of P. furiosus to underpin existing biochemical and molecular studies will contribute greatly to the establishment of P. furiosus as a model organism, particularly for biological hydrogen production.The development of genetic systems in the archaea, in general, presents many unique challenges given the extreme growth requirements of many of these organisms. To date, genetic systems of various levels of sophistication have been developed for representatives of all major groups of archaea, including halophiles, methanogens, thermoacidophiles, and hyperthermophiles (2,6,30,40,43,46). A variety of transformation methods are being used, including electroporation, heat shock with or without CaCl 2 treatment, phage-mediated transduction, spheroplast transformation, liposomes, and, very recently, even conjugation with Escherichia coli (2, 12). Transformation via natural competence has been reported in three archaeal species, in comparison to over 60 bacterial species that are known to exhibit this trait (16,36). Two of them are the methanogens Methanococcus voltae PS (7, 27) and Methanobacterium thermoautotrophicum Marburg (47); however, transformation frequencies were low, and there have been no follow-up studies regarding natural competence. The other is the hyperthermophile Thermococcus kodakarensis, which has an optimal growth temperature of 85°C. Its natural competence has enabled the development of genetic tools fo...
Phenolic glycolipids (PGLs) are polyketide-derived virulence factors produced by Mycobacterium tuberculosis, M. leprae, and other mycobacterial pathogens. We have combined bioinformatic, genetic, biochemical, and chemical biology approaches to illuminate the mechanism of chain initiation required for assembly of the p-hydroxyphenyl-polyketide moiety of PGLs. Our studies have led to the identification of a stand-alone, didomain initiation module, FadD22, comprised of a p-hydroxybenzoic acid adenylation domain and an aroyl carrier protein domain. FadD22 forms an acyl-S-enzyme covalent intermediate in the p-hydroxyphenyl-polyketide chain assembly line. We also used this information to develop a small-molecule inhibitor of PGL biosynthesis. Overall, these studies provide insights into the biosynthesis of an important group of small-molecule mycobacterial virulence factors and support the feasibility of targeting PGL biosynthesis to develop new drugs to treat mycobacterial infections.
Transcriptional and enzymatic analyses of Pyrococcus furiosus previously indicated that three proteins play key roles in the metabolism of elemental sulfur (S 0 ): a membrane-bound oxidoreductase complex (MBX), a cytoplasmic coenzyme A-dependent NADPH sulfur oxidoreductase (NSR), and sulfur-induced protein A (SipA). Deletion strains, referred to as MBX1, NSR1, and SIP1, respectively, have now been constructed by homologous recombination utilizing the uracil auxotrophic COM1 parent strain (⌬pyrF). The growth of all three mutants on maltose was comparable without S 0 , but in its presence, the growth of MBX1 was greatly impaired while the growth of NSR1 and SIP1 was largely unaffected. In the presence of S 0 , MBX1 produced little, if any, sulfide but much more acetate (per unit of protein) than the parent strain, demonstrating that MBX plays a critical role in S 0 reduction and energy conservation. In contrast, comparable amounts of sulfide and acetate were produced by NSR1 and the parent strain, indicating that NSR is not essential for energy conservation during S 0 reduction. Differences in transcriptional responses to S 0 in NSR1 suggest that two sulfide dehydrogenase isoenzymes provide a compensatory NADPH-dependent S 0 reduction system. Genes controlled by the S 0 -responsive regulator SurR were not as highly regulated in MBX1 and NSR1. SIP1 produced the same amount of acetate but more sulfide than the parent strain. That SipA is not essential for growth on S 0 indicates that it is not required for detoxification of metal sulfides, as previously suggested. A model is proposed for S 0 reduction by P. furiosus with roles for MBX and NSR in bioenergetics and for SipA in iron-sulfur metabolism.
The mycobactin siderophore system is present in many Mycobacterium species, including M. tuberculosis and other clinically relevant mycobacteria. This siderophore system is believed to be utilized by both pathogenic and nonpathogenic mycobacteria for iron acquisition in both in vivo and ex vivo iron-limiting environments, respectively. Several M. tuberculosis genes located in a so-called mbt gene cluster have been predicted to be required for the biosynthesis of the core scaffold of mycobactin based on sequence analysis. A systematic and controlled mutational analysis probing the hypothesized essential nature of each of these genes for mycobactin production has been lacking. The degree of conservation of mbt gene cluster orthologs remains to be investigated as well. In this study, we sought to conclusively establish whether each of nine mbt genes was required for mycobactin production and to examine the conservation of gene clusters orthologous to the M. tuberculosis mbt gene cluster in other bacteria. We report a systematic mutational analysis of the mbt gene cluster ortholog found in Mycobacterium smegmatis. This mutational analysis demonstrates that eight of the nine mbt genes investigated are essential for mycobactin production. Our genome mining and phylogenetic analyses reveal the presence of orthologous mbt gene clusters in several bacterial species. These gene clusters display significant organizational differences originating from an intricate evolutionary path that might have included horizontal gene transfers. Altogether, the findings reported herein advance our understanding of the genetic requirements for the biosynthesis of an important mycobacterial secondary metabolite with relevance to virulence.The obligate human pathogen Mycobacterium tuberculosis, most opportunistic mycobacterial human pathogens (e.g., M. avium), and many nonpathogenic saprophytic mycobacteria (e.g., M. smegmatis) produce a structurally complex salicylic acid-derived siderophore known as mycobactin (MBT) (Fig. 1) (5, 33, 35). MBT has a core scaffold of a proposed nonribosomal peptide-polyketide origin consisting of a hydroxyphenylcapped (methyl)oxazoline moiety linked to an N ε -hydroxylysine residue, which is typically connected to a terminal cyclo-N ε -hydroxylysine by a 4-carbon linker. This core scaffold is decorated with a variable fatty acyl substituent on the N ε of the internal N ε -hydroxylysine residue. Structural variants (carboxymycobactins) with acyl substituents terminating in a carboxylate or a methyl ester are also produced. Interestingly, the core scaffold of MBT is remarkably similar to core scaffolds seen in several compounds-some with interesting pharmacological activities-produced by species of the genus Nocardia (Fig. 1). Nocardia is a saprophytic group of actinomycetes closely related to the mycobacteria and includes species that are increasingly recognized as opportunistic human pathogens (2, 25).Studies with cellular and animal models of mycobacterial infection have established the relevance of the M...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.