Transient increase in cytosolic Cam , including regulation and activation of a number of Ca 2+ dependent enzymes, such as phospholipases, proteases and nucleases. Mitochondria and endoplasmic reticulum (ER) play pivotal roles in the maintenance of intracellular Ca 2+ homeostasis and regulation of cell death. Several lines of evidence have shown that, in the presence of some apoptotic stimuli, the activation of mitochondrial processes may lead to the release of cytochrome c followed by the activation of caspases, nuclear fragmentation and apoptotic cell death. The aim of this review was to show how changes in calcium signaling can be related to the apoptotic cell death induction. Calcium homeostasis was also shown to be an important mechanism involved in neurodegenerative and aging processes.
TLR4 polymorphisms 399 and 299 were not more frequent in patients with AS in comparison to the health controls and none of the clinical variables were associated with these polymorphisms.
Although the accumulation of the neurotoxic peptide β-amyloid (Aβ) in the central nervous system is a hallmark of Alzheimer's disease, whether Aβ acts in astrocytes is unclear, and downstream functional consequences have yet to be defined. Here, we show that cytosolic Ca(2+) dysregulation, induced by a neurotoxic fragment (Aβ25-35), caused apoptosis in a concentration-dependent manner, leading to cytoplasmic Ca(2+) mobilization from extra- and intracellular sources, mainly from the endoplasmic reticulum (ER) via IP3 receptor activation. This mechanism was related to Aβ-mediated apoptosis by the intrinsic pathway because the expression of pro-apoptotic Bax was accompanied by its translocation in cells transfected with GFP-Bax. Aβ-mediated apoptosis was reduced by BAPTA-AM, a fast Ca(2+) chelator, indicating that an increase in intracellular Ca(2+) was involved in cell death. Interestingly, the Bax translocation was dependent on Ca(2+) mobilization from IP3 receptors because pre-incubation with xestospongin C, a selective IP3 receptor inhibitor, abolished this response. Taken together, these results provide evidence that Aβ dysregulation of Ca(2+) homeostasis induces ER depletion of Ca(2+) stores and leads to apoptosis; this mechanism plays a significant role in Aβ apoptotic cell death and might be a new target for neurodegeneration treatments.
Glutamate is an important neurotransmitter in neurons and glial cells and it is one of the keys to the neuron-glial interaction in the brain. Glutamate transmission is strongly dependent on calcium homeostasis and on mitochondrial function. In the present work we presented several aspects related to the role of mitochondria in glutamate signaling and in brain diseases. We focused on glutamateinduced calcium signaling and its relation to the organelle dysfunction with cell death processes. In addition, we have discussed how alterations in this pathway may lead or aggravate a variety of neurodegenerative diseases. We compiled information on how mitochondria can influence cell fate during glutamate stimulation and calcium signaling. These organelles play a pivotal role in neuron and glial exchange, in synaptic plasticity and several pathological conditions related to Aging, Alzheimer's, Parkinson's and Huntington's diseases. We have also presented autophagy as a mechanism activated during mitochondrial dysfunction which may function as a protective mechanism during injury. Furthermore, some new perspectives and approaches to treat these neurodegenerative diseases are offered and evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.