MicroRNAs (miRNAs) are 21-23 nucleotide RNA molecules that regulate the stability or translational efficiency of target messenger RNAs. miRNAs have diverse functions, including the regulation of cellular differentiation, proliferation and apoptosis. Although strict tissue- and developmental-stage-specific expression is critical for appropriate miRNA function, mammalian transcription factors that regulate miRNAs have not yet been identified. The proto-oncogene c-MYC encodes a transcription factor that regulates cell proliferation, growth and apoptosis. Dysregulated expression or function of c-Myc is one of the most common abnormalities in human malignancy. Here we show that c-Myc activates expression of a cluster of six miRNAs on human chromosome 13. Chromatin immunoprecipation experiments show that c-Myc binds directly to this locus. The transcription factor E2F1 is an additional target of c-Myc that promotes cell cycle progression. We find that expression of E2F1 is negatively regulated by two miRNAs in this cluster, miR-17-5p and miR-20a. These findings expand the known classes of transcripts within the c-Myc target gene network, and reveal a mechanism through which c-Myc simultaneously activates E2F1 transcription and limits its translation, allowing a tightly controlled proliferative signal.
SUMMARY
T cell differentiation into distinct functional effector and inhibitory subsets is regulated in part by the cytokine environment present at the time of antigen recognition. Here, we show that hypoxia-inducible factor 1 (HIF-1), a key metabolic sensor, regulates the balance between T regulatory (Treg) and TH17 differentiation. HIF-1α enhances TH17 development through direct transcriptional activation of RORvt, and via tertiary complex formation with RORvt and p300 recruitment to the IL17 promoter, thereby regulating TH17 signature genes. Concurrently, HIF-1α attenuates Treg development by binding Foxp3 and targeting it for proteasomal degradation. Importantly this regulation occurs under both normoxic and hypoxic conditions. Mice with HIF-1α deficient T cells are resistant to induction of TH17-dependent experimental autoimmune encephalitis associated with diminished TH17 and increased Treg cells. These findings highlight the importance of metabolic cues in T cell fate determination and suggest that metabolic modulation could ameliorate certain T cell-based immune pathologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.