Updated imaging and photometric results from Chandra observations of SN 1987A, covering the last 16 years, are presented. We find that the 0.5-2 keV light curve has remained constant at ∼8 × 10 −12 erg s −1 cm −2 since 9500 days, with the 3-8 keV light curve continuing to increase until at least 10000 days. The expansion rate of the ring is found to be energy dependent, such that after day 6000 the ring expands faster in the 2-10 keV band than it does at energies < 2 keV. Images show a reversal of the east-west asymmetry between 7000 and 8000 days after the explosion. The latest images suggest the southeastern side of the equatorial ring is beginning to fade. Consistent with the latest optical and infrared results, our Chandra analysis indicates the blast wave is now leaving the dense equatorial ring, which marks the beginning of a major change in the evolutionary phase of the supernova remnant 1987A.
We examine deep XMM-Newton Reflection Grating Spectrometer (RGS) spectra from the cores of three X-ray bright cool core galaxy clusters, Abell 262, Abell 3581 and HCG 62. Each of the RGS spectra show Fe XVII emission lines indicating the presence of gas around 0.5 keV. There is no evidence for O VII emission which would imply gas at still cooler temperatures. The range in detected gas temperature in these objects is a factor of 3.7, 5.6 and 2 for Abell 262, Abell 3581 and HCG 62, respectively. The coolest detected gas only has a volume filling fraction of 6 and 3 per cent for Abell 262 and Abell 3581, but is likely to be volume filling in HCG 62. Chandra spatially resolved spectroscopy confirms the low volume filling fractions of the cool gas in Abell 262 and Abell 3581, indicating this cool gas exists as cold blobs. Any volume heating mechanism aiming to prevent cooling would overheat the surroundings of the cool gas by a factor of 4. If the gas is radiatively cooling below 0.5 keV, it is cooling at a rate at least an order of magnitude below that at higher temperatures in Abell 262 and Abell 3581 and two-orders of magnitude lower in HCG 62. The gas may be cooling non-radiatively through mixing in these cool blobs, where the energy released by cooling is emitted in the infrared. We find very good agreement between smooth particle inference modelling of the cluster and conventional spectral fitting. Comparing the temperature distribution from this analysis with that expected in a cooling flow, there appears to be a even larger break below 0.5 keV as compared with previous empirical descriptions of the deviations of cooling flow models.Comment: 19 pages, 22 figures, accepted by MNRA
Spitzer observations of SN 1987A have now spanned more than a decade. Since day ∼4000, mid-infrared (mid-IR) emission has been dominated by that from shock-heated dust in the equatorial ring (ER). From 6000 to 8000 days after the explosion, Spitzer observations included broadband photometry at 3.6-24 μm, and low and moderate resolution spectroscopy at 5-35 μm. Here we present later Spitzer observations, through day 10,377, which include only the broadband measurements at 3.6 and 4.5 μm. These data show that the 3.6 and 4.5 μm brightness has clearly begun to fade after day ∼8500, and no longer tracks the X-ray emission as well as it did at earlier epochs. This can be explained by the destruction of the dust in the ER on timescales shorter than the cooling time for the shocked gas. We find that the evolution of the late time IR emission is also similar to the now fading optical emission. We provide the complete record of the IR emission lines, as seen by Spitzer prior to day 8000. The past evolution of the gas as seen by the IR emission lines seems largely consistent with the optical emission, although the IR [Fe II] and [Si II] lines show different, peculiar velocity structures.
UkraineAstrophysical shocks at all scales, from those in the heliosphere up to the cosmological shock waves, are typically "collisionless", because the thickness of their jump region is much shorter than the collisional mean free path. Across these jumps, electrons, protons, and ions are expected to be heated at different temperatures. Supernova remnants (SNRs) are ideal targets to study collisionless processes because of their bright post-shock emission and fast shocks.Although optical observations of Balmer-dominated shocks in young SNRs showed that the post-shock proton temperature is higher than the electron temperature, the actual dependence of the post-shock temperature on the particle mass is still widely debated 1 . We tackle
Despite more than 30 years of searches, the compact object in Supernova (SN) 1987A has not yet been detected. We present new limits on the compact object in SN 1987A using millimeter, near-infrared, optical, ultraviolet, and X-ray observations from ALMA, VLT, HST, and Chandra. The limits are approximately 0.1 mJy (0.1×10 −26 erg s −1 cm −2 Hz −1 ) at 213 GHz, 1 L (6×10 −29 erg s −1 cm −2 Hz −1 ) in optical if our line-of-sight is free of ejecta dust, and 10 36 erg s −1 (2 × 10 −30 erg s −1 cm −2 Hz −1 ) in 2-10 keV X-rays. Our X-ray limits are an order of magnitude less constraining than previous limits because we use a more realistic ejecta absorption model based on three-dimensional neutrino-driven SN explosion models (Alp et al. 2018). The allowed bolometric luminosity of the compact object is 22 L Corresponding author: Dennis Alp dalp@kth.se arXiv:1805.04526v2 [astro-ph.HE] 30 Jul 2018 2 Alp et al.if our line-of-sight is free of ejecta dust, or 138 L if dust-obscured. Depending on assumptions, these values limit the effective temperature of a neutron star to < 4-8 MK and do not exclude models, which typically are in the range 3-4 MK. For the simplest accretion model, the accretion rate for an efficiency η is limited to < 10 −11 η −1 M yr −1 , which excludes most predictions. For pulsar activity modeled by a rotating magnetic dipole in vacuum, the limit on the magnetic field strength (B) for a given spin period (P ) is B 10 14 P 2 G s −2 , which firmly excludes pulsars comparable to the Crab. By combining information about radiation reprocessing and geometry, it is likely that the compact object is a dustobscured thermally-emitting neutron star, which may appear as a region of higher-temperature ejecta dust emission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.