Human saliva contains a plethora of proteins whose presence and concentration can be monitored for diagnosis and progression of disease. Saliva has been extensively probed for the diagnosis of several systemic and infectious diseases because of the ease with which it can be collected. However, amylase, the most abundant protein found in saliva can obscure the detection of low-abundance proteins by MALDI-ToF MS (matrix-assisted laser desorption/ionization-time of flight mass spectrometry) and diminish the diagnostic utility of this specimen type. In the present study, we used a device to deplete salivary amylase from water-gargle samples through affinity adsorption. After depletion, profiling of the saliva proteome was performed by MALDI-ToF MS on gargle samples from subjects whose COVID-19 (coronavirus disease 2019) status was confirmed by NP (nasopharyngeal) swab RT-qPCR (reverse transcription polymerase chain reaction). Amylase depletion led to the enhancement of signal intensities of various peaks as well as the detection of previously unobserved peaks in the MALDI-ToF spectra. The overall specificity and sensitivity after amylase depletion was 100% and 85.17% respectively for detecting COVID-19. Our simple, rapid and inexpensive technique to deplete salivary amylase can be used to unmask spectral diversity in saliva by MALDI-ToF MS, reveal low-abundant proteins and aid in the establishment of novel biomarkers for diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.