The kidney plays a vital role in the body's defense against potentially toxic xenobiotics and metabolic waste products through elimination pathways. In particular, secretory transporters in the proximal tubule are major determinants of the disposition of xenobiotics, including many prescription drugs. In the past decade, considerable progress has been made in understanding the impact of renal transporters on the disposition of many clinically used drugs. In addition, renal transporters have been implicated as sites for numerous clinically important drug-drug interactions. This review begins with a description of renal drug handling and presents relevant equations for the calculation of renal clearance, including filtration and secretory clearance. In addition, data on the localization, expression, substrates, and inhibitors of renal drug transporters are tabulated. The recent US Food and Drug Administration drug-drug interaction draft guidance as it pertains to the study of renal drug transporters is presented. Renal drug elimination in special populations and transporter splicing variants are also described.
Significance This manuscript describes a previously unidentified mechanism for organic cation transporter 1 (OCT1), the major hepatic metformin transporter, in hepatic steatosis. Here we show that OCT1, long thought to function primarily as a transporter for drugs, functions as a major thiamine transporter in the liver, which has profound implications in cellular metabolism. Collectively, our results point to an important role of thiamine (through OCT1) in hepatic steatosis and suggest that the modulation of thiamine disposition by metformin may contribute to its pharmacologic effects.
Interindividual variation in response to metformin, first-line therapy for type 2 diabetes, is substantial. Given that transporters are determinants of metformin pharmacokinetics, we examined the effects of promoter variants in both multidrug and toxin extrusion protein 1 (MATE1) (g.−66T→C, rs2252281) and MATE2 (g.−130G→A, rs12943590) on variation in metformin disposition and response. The pharmacokinetics and glucose-lowering effects of metformin were assessed in healthy volunteers (n = 57) receiving metformin. The renal and secretory clearances of metformin were higher (22% and 26%, respectively) in carriers of variant MATE2 who were also MATE1 reference (P < 0.05). Both MATE genotypes were associated with altered post-metformin glucose tolerance, with variant carriers of MATE1 and MATE2 having an enhanced (P < 0.01) and reduced (P < 0.05) response, respectively. Consistent with these results, patients with diabetes (n = 145) carrying the MATE1 variant showed enhanced metformin response. These findings suggest that promoter variants of MATE1 and MATE2 are important determinants of metformin disposition and response in healthy volunteers and diabetic patients.
Purpose: IDO1 induces immune suppression in T cells through L-tryptophan (Trp) depletion and kynurenine (Kyn) accumulation in the local tumor microenvironment, suppressing effector T cells and hyperactivating regulatory T cells (Treg). Navoximod is an investigational small-molecule inhibitor of IDO1. This phase I study evaluated safety, tolerability, pharmacokinetics, and pharmacodynamics of navoximod in combination with atezolizumab, a PD-L1 inhibitor, in patients with advanced cancer.Patients and Methods: The study consisted of a 3 þ 3 doseescalation stage (n ¼ 66) and a tumor-specific expansion stage (n ¼ 92). Navoximod was given orally every 12 hours continuously for 21 consecutive days of each cycle with the exception of cycle 1, where navoximod administration started on day À1 to characterize pharmacokinetics. Atezolizumab was administered by intravenous infusion 1,200 mg every 3 weeks on day 1 of each cycle.Results: Patients (n ¼ 157) received navoximod at 6 dose levels (50-1,000 mg) in combination with atezolizu-mab. The maximum administered dose was 1,000 mg twice daily; the MTD was not reached. Navoximod demonstrated a linear pharmacokinetic profile, and plasma Kyn generally decreased with increasing doses of navoximod. The most common treatment-related AEs were fatigue (22%), rash (22%), and chromaturia (20%). Activity was observed at all dose levels in various tumor types (melanoma, pancreatic, prostate, ovarian, head and neck squamous cell carcinoma, cervical, neural sheath, nonsmall cell lung cancer, triple-negative breast cancer, renal cell carcinoma, urothelial bladder cancer): 6 (9%) doseescalation patients achieved partial response, and 10 (11%) expansion patients achieved partial response or complete response.Conclusions: The combination of navoximod and atezolizumab demonstrated acceptable safety, tolerability, and pharmacokinetics for patients with advanced cancer. Although activity was observed, there was no clear evidence of benefit from adding navoximod to atezolizumab.
The human multidrug and toxin extrusion (MATE) transporter 1 contributes to the tissue distribution and excretion of many drugs. Inhibition of MATE1 may result in potential drug-drug interactions (DDIs) and alterations in drug exposure and accumulation in various tissues. The primary goals of this project were to identify MATE1 inhibitors with clinical importance or in vitro utility and to elucidate the physicochemical properties that differ between MATE1 and OCT2 inhibitors. Using a fluorescence assay of ASP+ uptake in cells stably expressing MATE1, over 900 prescription drugs were screened and 84 potential MATE1 inhibitors were found. We identified several MATE1 selective inhibitors including four FDA-approved medications that may be clinically relevant MATE1 inhibitors and could cause a clinical DDI. In parallel, a QSAR model identified distinct molecular properties of MATE1 versus OCT2 inhibitors and was used to screen the DrugBank in silico library for new hits in a larger chemical space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.