Early changes in physiological and oxidative status induced by salt stress were monitored in two Brassicaceae plants differing in their tolerance to salinity, Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Growth response and antioxidant defense of C. maritima under 400 mM NaCl were compared with those of A. thaliana exposed to 100 mM NaCl. Salinity induced early growth reduction that is less pronounced in C. maritima than in A. thaliana. Maximum hydrogen peroxide (H₂O₂) level occurred in the leaves of both species 4 h after the onset of salt treatment. A rapid decline in H₂O₂ concentration was observed thereafter in C. maritima, whereas it remained high in A. thaliana. Correlatively, superoxide dismutase, catalase and peroxidase activities increased at 4 h of treatment in C. maritima and decreased thereafter. However, the activity of these enzymes remained higher in treated plants than that in controls, regardless of the duration of treatment, in A. thaliana. The concentrations of malondialdehyde (MDA) reached maximum values at 24 h of salt stress in both species. Again, MDA levels decreased later in C. maritima, but remained high in A. thaliana. The contents of α-tocopherol remained constant during salt stress in C. maritima and decreased during the first 24 h of salt stress and then remained low in A. thaliana. The results clearly showed that C. maritima, in contrast to A. thaliana, can rapidly evolve physiological and antioxidant mechanisms to adapt to salt and manage the oxidative stress. This may explain, at least partially, the difference in salt tolerance between halophytes and glycophytes.
The present study was carried out to compare the effect of NaCl on growth, cell membrane
damage, and antioxidant defences in the halophyte
Crithmum maritimum L. (sea fennel). Physiological
and biochemical changes were investigated under
control (0 mM NaCl) and saline conditions (100 and
300 mM NaCl). Biomass and growth of roots were
more sensitive to NaCl than leaves. Roots were
distinguished from leaves by increased electrolyte
leakage and high malondialdehyde (MDA) concentration.
Superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) activities, ascorbic acid (AA) and glutathione (GSH) concentrations were lower in the roots than in the leaves of control plants. The different activity patterns of antioxidant enzymes in response to 100 and 300 mM NaCl indicated that leaves and roots reacted differently to salt stress. Leaf CAT, APX and glutathione reductase
(GR) activities were lowest at 300 mM NaCl, but they were unaffected by 100 mM NaCl. Only SOD activity was reduced in the latter treatment. Root SOD activity was significantly decreased in response to 300 mM NaCl and root APX activity was significantly higher in plants treated with 100 and 300 mM compared to the controls. The other activities in roots
were insensitive to salt. The concentration of AA
decreased in leaves at 100 and 300 mM NaCl, and in
roots at 300 mM NaCl, when compared to control plants. The concentrations of GSH in NaCl-treated leaves and roots were not significantly different from the controls. In both organs, AA and GSH were predominating in the total pool in ascorbic acid and glutathione, under control or saline conditions
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.