The sea and land surface temperature radiometer (SLSTR) is a nine-channel visible and infrared high-precision radiometer designed to provide climate data of global sea and land surface temperatures. The SLSTR payload is destined to fly on the Ocean and Medium-Resolution Land Mission for the ESA/EU global monitoring for environment and security (GMES) programme Sentinel-3 mission to measure the sea and land temperature and topography for near real-time environmental and atmospheric climate monitoring of the Earth. In this paper we describe the optical layout of infrared optics in the instrument, the spectral thin-film multilayer design, and the system channel throughput analysis for the combined interference filter and dichroic beam splitter coatings to discriminate wavelengths at 3.74, 10.85, 12.0 μm. The rationale for selection of thin-film materials, the deposition technique, and environmental testing, inclusive of humidity, thermal cycling, and ionizing radiation testing are also described.
Selected in 2019 as a NASA SIMPLEx mission, Lunar Trailblazer is in implementation for flight system delivery at the end of 2022. The mission's goal is to understand the form, abundance, and distribution of water on the Moon and the lunar water cycle. Lunar Trailblazer also collects data of candidate landing sites to inform planning for future human and robotic exploration of the Moon and evaluate the potential for in situ resource utilization. Lunar Trailblazer's two science instruments, the High-resolution Volatiles and Minerals Moon Mapper (HVM 3 ) and the Lunar Thermal Mapper (LTM) provide simultaneous high-resolution spectral imaging data to map OH/water, crustal composition, and thermophysical properties from a 100±30 km lunar polar orbit. The ~210-kg flight system deploys from an ESPA Grande and utilizes a ~1000 m/s ΔV hydrazine chemical propulsion system, similar to that employed by GRAIL. Trailblazing elements include the novel state-of-the-art dataset collected at substantially reduced price point, fully geographically co-registered data products delivered to the Planetary Data System, planetary mission team demographics, Caltech campus mission operations, and student staffing of select mission ops roles. Lunar Trailblazer's pioneering development is providing key lessons learned for future planetary small spacecraft.TABLE OF CONTENTS 1. INTRODUCTION .
With a growing interest in mid-and far-infrared astronomy using cooled imaging and spectrometer instruments in highaltitude observatories and spaceflight telescopes, it is becoming increasingly important to characterise and assess the spectral performance of cooled multilayer filters across the Q-band atmospheric window. This region contains spectral features emitted by many astrophysical phenomena and objects fundamental to circumstellar and planetary formation theories. However extending interference filtering to isolate radiation at progressively longer wavelengths and improve photometric accuracy is an area of ongoing and challenging thin-film research. We have successfully fabricated cooled bandpass and edge filters with high durability for operation across the 15-30 μm Q-band region. In this paper we describe the rationale for selection of optical materials and properties of fabricated thin-film coatings for this region, together with FTIR spectral measurements and assessment of environmental durability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.