International audienceGarnet (10 vol.%; pyrope contents 34-44 mol.%) hosted in quartzofeldspathic rocks within a large vertical shear zone of south Madagascar shows a strong grain-size reduction (from a few cm to 300 lm). Electron back-scattered diffraction, transmission electron microscopy and scanning electron microscope imaging coupled with quantitative analysis of digitized images (PolyLX software) have been used in order to understand the deformation mechanisms associated with this grain-size evolution. The garnet grain-size reduction trend has been summarized in a typological evolution (from Type I to Type IV). Type I, the original porphyroblasts, form cm-sized elongated grains that crystallized upon multiple nucleation and coalescence following biotite breakdown: biotite + sillimanite + quartz = garnet + alkali feldspar + rutile + melt. These large garnet grains contain quartz ribbons and sillimanite inclusions. Type I garnet is sheared along preferential planes (sillimanite layers, quartz ribbons and ⁄ or suitably oriented garnet crystallographic planes) producing highly elongated Type II garnet grains marked by a single crystallographic orientation. Further deformation leads to the development of a crystallographic misorientation, subgrains and new grains resulting in Type III garnet. Associated grainsize reduction occurs via subgrain rotation recrystallization accompanied by fast diffusion-assisted dislocation glide. This plastic deformation of garnet is associated with efficient recovery as shown by the very low dislocation densities (1010 m)3 or lower). The rounded Type III garnet experiences rigid body rotation in fine-grained matrix. In the highly deformed samples, the deformation mechanisms in garnet are grain-size- and shape-dependent: dislocation creep is dominant for the few large grains left (>1 mm; Type II garnet), rigid body rotation is typical for the smaller rounded grains (300 lm or less; Type III garnet) whereas diffusion creep may affect more elliptic garnet (Type IV garnet). The P-T conditions of garnet plasticity in the continental crust (‡950 C; 11 kbar) have been identified using two-feldspar thermometry and GASP conventional barometry. The garnet microstructural and deformation mechanisms evolution, coupled with grain-size decrease in a fine-grained steady-state microstructure of quartz, alkali feldspar and plagioclase, suggests a separate mechanical evolution of garnet with respect to felsic minerals within the shear zone. Key words: deformation mechanisms; garnet plasticity; perthite; shear zone
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.