Purpose In neuropathic postural tachycardia syndrome, peripheral sympathetic dysfunction leads to excessive venous blood pooling during orthostasis. Up to 84% of patients report leg pain and weakness in the upright position. To explore possible pathophysiological processes underlying these symptoms, the present study examined muscle excitability depending on body position in patients with neuropathic postural tachycardia syndrome and healthy subjects. Methods In ten patients with neuropathic postural tachycardia syndrome and ten healthy subjects, muscle excitability measurements were performed repeatedly: in the supine position, during 10 min of head-up tilt and during 6 min thereafter. Additionally, lower leg circumference was measured and subjective leg pain levels were assessed. Results In patients with neuropathic postural tachycardia syndrome, muscle excitability was increased in the supine position, decreased progressively during tilt, continued to decrease after being returned to the supine position, and did not completely recover to baseline values after 6 min of supine rest. The reduction in muscle excitability during tilt was paralleled by an increase in lower leg circumference as well as leg pain levels. No such changes were observed in healthy subjects. Conclusions This study provides evidence for the occurrence of orthostatic changes in muscle excitability in patients with neuropathic postural tachycardia syndrome and that these may be associated with inadequate perfusion of the lower extremities. Insufficient perfusion as a consequence of blood stasis may cause misery perfusion of the muscles, which could explain the occurrence of orthostatic leg pain in neuropathic postural tachycardia syndrome.
Background: Postural tachycardia syndrome (POTS) is a form of autonomic dysregulation. There is increasing evidence that the etiology may be immune-mediated in a subgroup of patients. Patients with POTS often experience an exacerbation of their symptoms associated with (viral) infections and often fear the same symptom aggravation after vaccination. In this report we describe the tolerability of messenger ribonucleic acid (mRNA) vaccines against coronavirus disease 19 (COVID-19) and the consequences of a COVID-19 infection on POTS symptoms in our cohort of patients with neuropathic POTS. Methods: We conducted a standardized, checklist-based interview with 23 patients and recorded the acute side effects of mRNA vaccination, acute symptoms of COVID-19 infection as well as the effects of vaccination and COVID-19 infection on POTS symptoms. Results: Of all included patients, 20 patients received two mRNA vaccines without having had a previous COVID-19 infection, and five patients in total had suffered a COVID-19 infection. Of these, three had COVID-19 without and two after being vaccinated. No increased frequency of side effects after both doses of mRNA vaccines was observed. Six patients reported a mild and short-term aggravation of their POTS symptoms beyond the duration of acute vaccine side effects. All five patients who suffered a COVID-19 infection subsequently reported a pronounced and persistent exacerbation of POTS symptoms. Conclusions: Our observations suggest that mRNA vaccines are not associated with a higher frequency of acute side effects in patients with POTS. Symptom exacerbation as a consequence of mRNA vaccination seems to be less frequent and of shorter duration compared to patients who suffered a COVID-19 infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.