Previous studies in pigs and goats have demonstrated that AVE0118 prolongs atrial refractoriness without any effect on the QT-interval. The purpose of the present study was to investigate the effect of the compound on various cardiac ion channels. AVE0118 blocked the pig Kv1.5 and the human Kv1.5 expressed in Xenopus oocytes with IC(50) values of 5.4+/-0.7 microM and 6.2+/-0.4 microM respectively. In Chinese hamster ovary (CHO) cells, AVE0118 decreased the steady-state hKv1.5 current with an IC(50) of 1.1+/-0.2 microM. The hKv4.3/KChIP2.2 current in CHO cells was blocked by AVE0118 by accelerating the apparent time-constant of inactivation ( tau(inact)), and the integral current was inhibited with an IC(50) of 3.4+/-0.5 microM. At 10 microM AVE0118 tau(inact) decreased from 9.3+/-0.6 ms ( n=8, control) to 3.0+/-0.3 ms ( n=8). The K(ACh) current was investigated in isolated pig atrial myocytes by application of 10 microM carbachol. At a clamp potential of -100 mV the I(KACh) was half-maximally blocked by 4.5+/-1.6 microM AVE0118. In the absence of carbachol, AVE0118 had no effect on the inward current recorded at -100 mV. Effects on the I(Kr) current were investigated on HERG channels expressed in CHO cells. AVE0118 blocked this current half-maximally at approximately 10 microM. Comparable results were obtained in isolated guinea pig ventricular myocytes, where half-maximal inhibition of the I(Kr) tail current occurred at a similar concentration of AVE0118. Other ionic currents, like the I(Ks), I(KATP) (recorded in guinea pig ventricular myocytes), and L-type Ca(2+) (recorded in pig atrial myocytes) were blocked by 10 microM AVE0118 by 10+/-3% ( n=6), 28+/-7% ( n=4), and 22+/-13% ( n=5) respectively. In summary, AVE0118 preferentially inhibits the atrial K(+) channels I(Kur), I(to) and I(KACH). This profile may explain the selective prolongation of atrial refractoriness described previously in pigs and goats.
The inhibitory effects of the novel Kv1.5 channel blocker, S9947 (2'-(benzyloxycarbonylaminomethyl)biphenyl-2-carboxylic acid 2-(2-pyridyl)ethylamide), on cloned human Kv1.5 (hKv1.5), expressed in both Xenopus oocytes and Chinese hamster ovary (CHO) cells, and on native cardiac ultrarapid delayed rectifier potassium currents (IKur) in rat (ventricle myocytes) and human (atrial myocytes) were investigated. The influence of S9947 on the action potential was examined in rat ventricular myocytes. Using the two-electrode voltage-clamp technique in Xenopus oocytes and the patch-clamp technique (whole cell configuration) in CHO cells, hKv1.5 was inhibited by S9947 with IC50 values of 0.65 microM and 0.42 microM, respectively. In addition, inhibition of human Kv4.3 (hKv4.3) and HERG by 10 microM S9947 was low (approximately 20%) and absent, respectively. Using the patch-clamp technique in the whole cell configuration, IKur currents in rat ventricular (rIKur) cardiomyocytes and human atrial (hIKur) cardiomyocytes were inhibited by S9947 with IC50 values of 0.96 microM and 0.07 microM, respectively. In contrast, rat cardiac inward rectifier current (rIK1) and rat (rIto) and human (hIto) cardiac transient outward currents were only inhibited by approximately 20% with 10 microM S9947. In rat cardiomyocytes, using the patch-clamp technique, action potential duration was increased by S9947 in a concentration-dependent (0.3-10 microM) and rate-independent manner. The data show that S9947 suppresses both cloned (Kv1.5) and native (IKur) cardiac potassium currents. Furthermore, S9947 prolongs rat action potential in a rate-independent manner.
The inhibitory effects of the anesthetic barbiturate pentobarbital on the slow ( I(Ks)) and fast component ( I(Kr)) of cardiac delayed rectifier potassium currents ( I(K)) and on the inward rectifier potassium currents ( I(K1)) were examined in Xenopus oocytes expressing the human minK, human ether-á-go-go related gene (HERG) and guinea pig Kir2.2, respectively. Block of native I(K) ( I(Ks) and I(Kr)) and inward rectifier potassium current ( I(K1)) by pentobarbital was examined in guinea pig ventricular myocytes. In oocytes using the two electrode voltage clamp technique potassium currents of hminK-, HERG- and Kir2.2-expressing oocytes were inhibited by pentobarbital with IC50 values of 0.20, 1.58 and 0.54 mM, respectively. I(Ks) block was time- and voltage-independent and had no influence on activation at positive voltages although it shifted voltage-dependent activation to more positive voltages. Pentobarbital-induced HERG inhibition was not dependent on voltage but influenced the deactivation kinetics and shifted half-maximal activation to more negative voltages. In guinea pig cardiomyocytes, using the patch clamp technique, I(Ks) and I(Kr) were inhibited by pentobarbital with IC50 values of 0.18 mM and 2.75 mM, respectively. I(Kr) deactivation and I(Ks) activation kinetics were only slightly influenced by pentobarbital, if at all. Block of I(K1) was weakly voltage-dependent with IC(50) values of 0.26 mM (-40 mV) and 0.91 mM (-120 mV). The data show that pentobarbital suppresses both cloned ( I(K), I(Kir2.2)) and native ( I(K), I(K1)) cardiac potassium currents with the highest affinity for I(Ks).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.