Objective. To investigate whether smoking and HLA-DR shared epitope (SE) genes may interact in triggering immune reactions to citrulline-modified proteins.Methods. In a case-control study involving patients with recent-onset rheumatoid arthritis (RA), we studied interactions between a major environmental risk factor (smoking), major susceptibility genes included in the SE of HLA-DR, and the presence of the most specific autoimmunity known for RA (i.e., antibodies to proteins modified by citrullination). Immunostaining for citrullinated proteins in cells from bronchoalveolar lavage fluid was used to investigate whether smoking is associated with citrullination in the lungs.Results. Previous smoking was dose-dependently associated with occurrence of anticitrulline antibodies in RA patients. The presence of SE genes was a risk factor only for anticitrulline-positive RA, and not for anticitrulline-negative RA. A major geneenvironment interaction between smoking and HLA-DR SE genes was evident for anticitrulline-positive RA, but not for anticitrulline-negative RA, and the combination of smoking history and the presence of double copies of HLA-DR SE genes increased the risk for RA 21-fold compared with the risk among nonsmokers carrying no SE genes. Positive immunostaining for citrullinated proteins was recorded in bronchoalveolar lavage cells from smokers but not in those from nonsmokers.Conclusion. We identified an environmental factor, smoking, that in the context of HLA-DR SE genes may trigger RA-specific immune reactions to citrullinated proteins. These data thus suggest an etiology involving a specific genotype, an environmental provocation, and the induction of specific autoimmunity, all restricted to a distinct subset of RA.
Objective. To investigate protein citrullination by the periodontal pathogen Porphyromonas gingivalis as a potential mechanism for breaking tolerance to citrullinated proteins in rheumatoid arthritis (RA).Methods. The expression of endogenous citrullinated proteins was analyzed by immunoblotting of cell extracts from P gingivalis and 10 other oral bacteria. P gingivalis-knockout strains lacking the bacterial peptidylarginine deiminases (PADs) or gingipains were created to assess the role of these enzymes in citrullination. Citrullination of human fibrinogen and ␣-enolase by P gingivalis was studied by incubating live wild-type and knockout strains with the proteins and analyzing the products by immunoblotting and mass spectrometry.Results. Endogenous protein citrullination was abundant in P gingivalis but lacking in the other oral bacteria. Deletion of the bacterial PAD gene resulted in complete abrogation of protein citrullination. Inactivation of arginine gingipains, but not lysine gingipains, led to decreased citrullination. Incubation of wild-type P gingivalis with fibrinogen or ␣-enolase caused degradation of the proteins and citrullination of the resulting peptides at carboxy-terminal arginine residues, which were identified by mass spectrometry.Conclusion. Our findings demonstrate that among the oral bacterial pathogens tested, P gingivalis is unique in its ability to citrullinate proteins. We further show that P gingivalis rapidly generates citrullinated host peptides by proteolytic cleavage at Arg-X peptide bonds by arginine gingipains, followed by citrullination of carboxy-terminal arginines by bacterial PAD. Our results suggest a novel model where P gingivalismediated citrullination of bacterial and host proteins provides a molecular mechanism for generating antigens that drive the autoimmune response in RA.Rheumatoid arthritis (RA) is characterized by disease-specific autoimmunity to citrullinated proteins. Citrullination is a posttranslational modification of arginine residues that is mediated by the family of peptidylarginine deiminases (PADs). Citrullinated fibrin(ogen) and ␣-enolase are 2 of the physiologic proteins that are targeted by anti-citrullinated protein antibodies in RA (1-5). Fibrinogen is the precursor of fibrin, and autoanMs. Wegner and Drs.
Rheumatoid arthritis (RA) is now clearly a true autoimmune disease with accumulating evidence of pathogenic disease-specific autoimmunity to citrullinated proteins. Citrullination, also termed deimination, is a modification of arginine side chains catalyzed by peptidylarginine deiminase (PAD) enzymes. This post-translational modification has the potential to alter the structure, antigenicity, and function of proteins. In RA, antibodies to cyclic citrullinated peptides are now well established for clinical diagnosis, though we argue that the identification of specific citrullinated antigens, as whole proteins, is necessary for exploring pathogenic mechanisms. Four citrullinated antigens, fibrinogen, vimentin, collagen type II, and alpha-enolase, are now well established, with others awaiting further characterization. All four proteins are expressed in the joint, and there is evidence that antibodies to citrullinated fibrinogen and collagen type II mediate inflammation by the formation of immune complexes, both in humans and animal models. Antibodies to citrullinated proteins are associated with HLA 'shared epitope' alleles, and autoimmunity to at least one antigenic sequence, the CEP-1 peptide from citrullinated alpha-enolase (KIHAcitEIFDScitGNPTVE), shows a specific association with HLA-DRB1*0401, *0404, 620W PTPN22, and smoking. Periodontitis, in which Porphyromonas gingivalis is a major pathogenic bacterium, has been linked to RA in epidemiological studies and also shares similar gene/environment associations. This is also the only bacterium identified that expresses endogenous citrullinated proteins and its own bacterial PAD enzyme, though the precise molecular mechanisms of bacterial citrullination have yet to be explored. Thus, both smoking and Porphyromonas gingivalis are attractive etiological agents for further investigation into the gene/environment/autoimmunity triad of RA.
Antibodies to citrullinated proteins (ACPA), i.e., to peptides posttranslationally modified by the conversion of arginine to citrulline, are specific serological markers for rheumatoid arthritis (RA). Studies on anticitrulline immunity, summarized in this review, demonstrate that the criterion-based syndrome RA should be subdivided into at least two distinct subsets (ACPA-positive and ACPA-negative disease). A new etiological model is proposed for ACPA-positive RA, built on MHC class II-dependent activation of adaptive immunity. Fundamentals of this model include the following: (a) ACPA antedate onset of arthritis; (b) ACPA may aggravate arthritis in rodents; (c) ACPA are triggered in the context of genes that confer susceptibility to RA (HLA-DRB1 SE) and by environmental agents triggering RA (smoking or bacterial stimuli); (d) ACPA may complex with citrullinated proteins present in target tissue as part of a multistep process for arthritis development. The model provides a new basis for molecular studies on the pathogenesis of ACPA-positive arthritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.