Objective. To investigate protein citrullination by the periodontal pathogen Porphyromonas gingivalis as a potential mechanism for breaking tolerance to citrullinated proteins in rheumatoid arthritis (RA).Methods. The expression of endogenous citrullinated proteins was analyzed by immunoblotting of cell extracts from P gingivalis and 10 other oral bacteria. P gingivalis-knockout strains lacking the bacterial peptidylarginine deiminases (PADs) or gingipains were created to assess the role of these enzymes in citrullination. Citrullination of human fibrinogen and ␣-enolase by P gingivalis was studied by incubating live wild-type and knockout strains with the proteins and analyzing the products by immunoblotting and mass spectrometry.Results. Endogenous protein citrullination was abundant in P gingivalis but lacking in the other oral bacteria. Deletion of the bacterial PAD gene resulted in complete abrogation of protein citrullination. Inactivation of arginine gingipains, but not lysine gingipains, led to decreased citrullination. Incubation of wild-type P gingivalis with fibrinogen or ␣-enolase caused degradation of the proteins and citrullination of the resulting peptides at carboxy-terminal arginine residues, which were identified by mass spectrometry.Conclusion. Our findings demonstrate that among the oral bacterial pathogens tested, P gingivalis is unique in its ability to citrullinate proteins. We further show that P gingivalis rapidly generates citrullinated host peptides by proteolytic cleavage at Arg-X peptide bonds by arginine gingipains, followed by citrullination of carboxy-terminal arginines by bacterial PAD. Our results suggest a novel model where P gingivalismediated citrullination of bacterial and host proteins provides a molecular mechanism for generating antigens that drive the autoimmune response in RA.Rheumatoid arthritis (RA) is characterized by disease-specific autoimmunity to citrullinated proteins. Citrullination is a posttranslational modification of arginine residues that is mediated by the family of peptidylarginine deiminases (PADs). Citrullinated fibrin(ogen) and ␣-enolase are 2 of the physiologic proteins that are targeted by anti-citrullinated protein antibodies in RA (1-5). Fibrinogen is the precursor of fibrin, and autoanMs. Wegner and Drs.
Rheumatoid arthritis (RA) is now clearly a true autoimmune disease with accumulating evidence of pathogenic disease-specific autoimmunity to citrullinated proteins. Citrullination, also termed deimination, is a modification of arginine side chains catalyzed by peptidylarginine deiminase (PAD) enzymes. This post-translational modification has the potential to alter the structure, antigenicity, and function of proteins. In RA, antibodies to cyclic citrullinated peptides are now well established for clinical diagnosis, though we argue that the identification of specific citrullinated antigens, as whole proteins, is necessary for exploring pathogenic mechanisms. Four citrullinated antigens, fibrinogen, vimentin, collagen type II, and alpha-enolase, are now well established, with others awaiting further characterization. All four proteins are expressed in the joint, and there is evidence that antibodies to citrullinated fibrinogen and collagen type II mediate inflammation by the formation of immune complexes, both in humans and animal models. Antibodies to citrullinated proteins are associated with HLA 'shared epitope' alleles, and autoimmunity to at least one antigenic sequence, the CEP-1 peptide from citrullinated alpha-enolase (KIHAcitEIFDScitGNPTVE), shows a specific association with HLA-DRB1*0401, *0404, 620W PTPN22, and smoking. Periodontitis, in which Porphyromonas gingivalis is a major pathogenic bacterium, has been linked to RA in epidemiological studies and also shares similar gene/environment associations. This is also the only bacterium identified that expresses endogenous citrullinated proteins and its own bacterial PAD enzyme, though the precise molecular mechanisms of bacterial citrullination have yet to be explored. Thus, both smoking and Porphyromonas gingivalis are attractive etiological agents for further investigation into the gene/environment/autoimmunity triad of RA.
Objective. To map the antibody response to human citrullinated ␣-enolase, a candidate autoantigen in rheumatoid arthritis (RA), and to examine crossreactivity with bacterial enolase.Methods. Serum samples obtained from patients with RA, disease control subjects, and healthy control subjects were tested by enzyme-linked immunosorbent assay (ELISA) for reactivity with citrullinated ␣-enolase peptides. Antibodies specific for the immunodominant epitope were raised in rabbits or were purified from RA sera. Cross-reactivity with other citrullinated epitopes was investigated by inhibition ELISAs, and cross-reactivity with bacterial enolase was investigated by immunoblotting.Results. An immunodominant peptide, citrullinated ␣-enolase peptide 1, was identified. Antibodies to this epitope were observed in 37-62% of sera obtained from patients with RA, 3% of sera obtained from disease control subjects, and 2% of sera obtained from healthy control subjects. Binding was inhibited with homologous peptide but not with the arginine-containing control peptide or with 4 citrullinated peptides from elsewhere on the molecule, indicating that antibody binding was dependent on both citrulline and flanking amino acids. The immunodominant peptide showed 82% homology with enolase from Porphyromonas gingivalis, and the levels of antibodies to citrullinated ␣-enolase peptide 1 correlated with the levels of antibodies to the bacterial peptide (r 2 ؍ 0.803, P < 0.0001). Affinitypurified antibodies to the human peptide cross-reacted with citrullinated recombinant P gingivalis enolase.Conclusion. We have identified an immunodominant epitope in citrullinated ␣-enolase, to which antibodies are specific for RA. Our data on sequence similarity and cross-reactivity with bacterial enolase may indicate a role for bacterial infection, particularly with P gingivalis, in priming autoimmunity in a subset of patients with RA.
Autoimmunity in rheumatoid arthritis (RA) is characterized by an antibody response to citrullinated proteins. Two of the risk factors for RA-HLA-DRB1 shared epitope alleles and smoking-are also associated with periodontitis, which is largely, but not exclusively, caused by Porphyromonas gingivalis infection. Furthermore, RA and periodontitis have a similar pathophysiology, characterized by destructive inflammation. The citrullination of proteins by P. gingivalis and the subsequent generation of autoantigens that drive autoimmunity in RA represents a possible causative link between these two diseases. Antibodies directed towards the immunodominant epitope of human citrullinated α-enolase cross-react with a conserved sequence on citrullinated P. gingivalis enolase. On the basis of this cross-reactivity, in this Perspectives article we explore the hypothesis of molecular mimicry in the etiology of RA, with citrullinated enolase as the specific antigen involved.
BackgroundRheumatoid arthritis (RA) is characterised by autoimmunity to citrullinated proteins, and there is increasing epidemiologic evidence linking Porphyromonas gingivalis to RA. P gingivalis is apparently unique among periodontal pathogens in possessing a citrullinating enzyme, peptidylarginine deiminase (PPAD) with the potential to generate antigens driving the autoimmune response.ObjectivesTo examine the immune response to PPAD in patients with RA, individuals with periodontitis (PD) and controls (without arthritis), confirm PPAD autocitrullination and identify the modified arginine residues.MethodsPPAD and an inactivated mutant (C351A) were cloned and expressed and autocitrullination of both examined by immunoblotting and mass spectrometry. ELISAs using PPAD, C351A and another P gingivalis protein arginine gingipain (RgpB) were developed and antibody reactivities examined in patients with RA (n=80), individuals with PD (n=44) and controls (n=82).ResultsRecombinant PPAD was a potent citrullinating enzyme. Antibodies to PPAD, but not to Rgp, were elevated in the RA sera (median 122 U/ml) compared with controls (median 70 U/ml; p<0.05) and PD (median 60 U/ml; p<0.01). Specificity of the anti-peptidyl citrullinated PPAD response was confirmed by the reaction of RA sera with multiple epitopes tested with synthetic citrullinated peptides spanning the PPAD molecule. The elevated antibody response to PPAD was abolished in RA sera if the C351A mutant was used on ELISA.ConclusionsThe peptidyl citrulline-specific immune response to PPAD supports the hypothesis that, as a bacterial protein, it might break tolerance in RA, and could be a target for therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.