The crystallinity of cellulose has a strong impact on various material properties. Over the years, many methods have become available to estimate the crystallinity. The purpose of this work was to revise existing NMR-based methods and to introduce a complementary NMR method related to the 13 C T 1 relaxation time. The 13 C T 1 differs by an order of magnitude for amorphous and crystalline polymers among them cellulose. We have utilized the signal boost of 1 H-13 C cross polarization and the difference in 13 C T 1 as a filter to calculate the degree of crystallinity. The evaluation of the method is based on the difference in peak integrals, which is fed into a simple equation. The method was applied to five cellulosic samples of different nature and compared the obtained degree of crystallinity with the degree estimated from deconvoluted X-ray scattering patterns. Furthermore, an attempt has been made to give a basic understanding on the origin of CP enhancement in order to validate various proposed NMR methods. With the recent progress of NMR equipment, the presented method can be automatized and applied to a series of samples using a sample changer.
Hydroxyazetidinium salts were used to surface-modify cellulose nanocrystals (CNC) by grafting the salts onto the sulphate ester groups on the CNC surfaces. The grafting was confirmed by f-potential measurements and by the thermal degradation behaviour of the modified CNC. The thermal stability (onset of degradation) of the CNC was improved by the surface modification (almost 100°C). Composites containing surface-modified or unmodified CNC (0.1, 1.0 and 10 wt%) with an ethylene-based copolymer as matrix were produced by compression moulding. The thermal stability of the composites was not, however, markedly improved by the surface grafting onto the CNC. It is suggested that this is due to a degrafting mechanism, associated with the alkaline character of the system, taking place at high temperatures. Model experiments indicated, however, that this did not occur at the conditions under which the composites were produced. Furthermore, in the case of a reference based on pH-neutralised polymeric system and modified CNC, an upward shift in the onset of thermal degradation of the composite was observed. The addition of the CNC to the polymer matrix had a strong influence of the mechanical performance. For example, the tensile modulus increased approximately three times for some systems when adding 10 wt% CNC. The surface grafting of the hydroxyazetidinium salts appeared mainly to affect, in a positive sense, the yield behaviour and ductility of the composites. The results of the mechanical testing are discussed in terms of interactions between the grafted units and the matrix material and between the grafted groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.