BACKGROUND Cardiac troponin T (cTnT) is released from damaged heart tissue in patients with acute myocardial infarction. It is presumed that most cTnT is tightly bound and released following the degradation of myofibrils in necrotic cardiomyocytes, resulting in sustained increases in circulating cTnT. Evidence of a large irreversibly bound fraction is based on the inability to extract most cTnT from cardiac tissue in cold low-salt extraction buffers. METHODS Here we examined in vitro extraction of cTnT from human cardiac tissue in serum at 37 °C. RESULTS We found that over 80% of the cTnT can be extracted from human cardiac tissue in 90 min using large volumes of human serum at 37 °C. The release ratio was highly dependent on the extraction volume and was only 3% if an equal volume of serum and heart tissue was used. In contrast, extraction of the cytoplasmic cardiac damage markers myoglobin and creatinine kinase was much less affected by changing these conditions. Purified cTnT was poorly soluble in a low-salt extraction buffer at 0 °C, previously used to define the free cTnT fraction. CONCLUSIONS Our data indicate that the diffusible fraction of cTnT is likely substantially larger in vivo than previously reported and likely is not fixed but dependent on local plasma flow. It is therefore possible that the sustained increase in circulating cTnT after myocardial infarction is at least in part due to a slow washout of cTnT that interacts reversibly with tropomyosin in myofibrils.
Background Although cardiac troponin I (cTnI) and troponin T (cTnT) form a complex in the human myocardium and bind to thin filaments in the sarcomere, cTnI often reaches higher concentrations and returns to normal concentrations faster than cTnT in patients with acute myocardial infarction (MI). Methods We compared the overall clearance of cTnT and cTnI in rats and in patients with heart failure and examined the release of cTnT and cTnI from damaged human cardiac tissue in vitro. Results Ground rat heart tissue was injected into the quadriceps muscle in rats to simulate myocardial damage with a defined onset. cTnT and cTnI peaked at the same time after injection. cTnI returned to baseline concentrations after 54 h, compared with 168 h for cTnT. There was no difference in the rate of clearance of solubilized cTnT or cTnI after intravenous or intramuscular injection. Renal clearance of cTnT and cTnI was similar in 7 heart failure patients. cTnI was degraded and released faster and reached higher concentrations than cTnT when human cardiac tissue was incubated in 37°C plasma. Conclusion Once cTnI and cTnT are released to the circulation, there seems to be no difference in clearance. However, cTnI is degraded and released faster than cTnT from necrotic cardiac tissue. Faster degradation and release may be the main reason why cTnI reaches higher peak concentrations and returns to normal concentrations faster in patients with MI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.