Massive biotic change occurred during the Eocene as the climate shifted from warm and equable to seasonal and latitudinally stratified. Mild winter temperatures across Arctic intercontinental land bridges permitted dispersal of frost-intolerant groups until the Eocene-Oligocene boundary, while trans-Arctic dispersal in thermophilic groups may have been limited to the early Eocene, especially during short-lived hyperthermals. Some of these lineages are now disjunct between continents of the northern hemisphere. Although Eocene climate change may have been one of the most important drivers of these ancient patterns in modern animal and plant distributions, its particular events are rarely implicated or correlated with group-specific climatic requirements. Here we explored the climatic and geological drivers of a particularly striking Neotropical-Oriental disjunct distribution in the rove beetle Bolitogyrus, a suspected Eocene relict. We integrated evidence from Eocene fossils, distributional and climate data, paleoclimate, paleogeography, and phylogenetic divergence dating to show that intercontinental dispersal of Bolitogyrus ceased in the early Eocene, consistent with the termination of conditions required by thermophilic lineages. These results provide new insight into the poorly known and short-lived Arctic forest community of the Early Eocene and its surviving lineages.
Th e fossil ship-timber beetle Cratoatractocerus grimaldii gen. et sp.n. is described from the Lower Cretaceous of Brazil. Th e new taxon is placed within Atractocerinae. It is distinguished from all modern genera of the subfamily by a M+Cu fork in the hind wing venation. Cratoatractocerus grimaldii is the oldest known representative of Lymexylidae and considered as the most basal member of Atractocerinae. Th is fossil proves that this subfamily appeared at least by the Early Cretaceous.
Stenus is the largest genus of rove beetles and the second largest among animals. Its evolutionary success was associated with the adhesive labial prey-capture apparatus, a unique apomorphy of that genus. Definite Stenus with prey-capture apparatus are known from the Cenozoic fossils, while the age and early evolution of Steninae was hardly ever hypothesized. Our study of several Cretaceous Burmese amber inclusions revealed a stem lineage of Steninae that possibly possesses the Stenus-like prey-capture apparatus. Phylogenetic analysis of extinct and extant taxa of Steninae and putatively allied subfamilies of Staphylinidae with parsimony and Bayesian approaches resolved the Burmese amber lineage as a member of Steninae. It justified the description of a new extinct stenine genus Festenus with two new species, F. robustus and F. gracilis. The Late Cretaceous age of Festenus suggests an early origin of prey-capture apparatus in Steninae that, perhaps, drove the evolution towards the crown Stenus. Our analysis confirmed the well-established sister relationships between Steninae and Euaesthetinae and resolved Scydmaeninae as their next closest relative, the latter having no stable position in recent phylogenetic studies of rove beetles. Close affiliation of Megalopsidiinae, a subfamily often considered as a sister group to Euaesthetinae + Steninae clade, is rejected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.