Coupling synchrotron IR beam to an ATR element enhances spatial resolution suited for high-resolution single cell analysis in biology, medicine and environmental science.
Metal homeostasis is integral to normal plant growth and development. During plant-pathogen interactions, the host and pathogen compete for the same nutrients, potentially impacting on nutritional homeostasis. Our knowledge of outcome of the interaction in terms of metal homeostasis is still limited. Here, we employed X-ray fluorescence microscopy (XFM) beamline at the Australian Synchrotron to visualise and analyse the fate of nutrients in wheat leaves infected with Pyrenophora tritici-repentis, a necrotrophic fungal pathogen. We sought to (i) evaluate the utility of XFM for sub-micron mapping of essential mineral nutrients and ii) examine the spatiotemporal impact of a pathogen on nutrient distribution in leaves. XFM maps of K, Ca, Fe, Cu, Mn, and Zn revealed substantial hyperaccumulation within, and depletion around, the infected region relative to uninfected control samples. Fungal mycelia were visualised as threadlike structures in the Cu and Zn maps. The hyperaccumulation of Mn in the lesion and localised depletion in asymptomatic tissue surrounding the lesion was unexpected. Similarly, Ca accumulated at the periphery of symptomatic region and as micro-accumulations aligning with fungal mycelia. Collectively, our results highlight that XFM imaging provides capability for high resolution mapping of elements to probe nutrient distribution in hydrated diseased leaves in situ.
Analysis of the epicuticular wax layer on the surface of plant leaves can provide a unique window into plant physiology and responses to environmental stimuli. Well-established analytical methodologies can quantify epicuticular wax composition, yet few methods are capable of imaging wax distribution in situ or in vivo. Here, the first report of Fourier transform infrared (FTIR) reflectance spectroscopic imaging as a non-destructive, in situ, method to investigate variation in epicuticular wax distribution at 25 μm spatial resolution is presented. The authors demonstrate in vivo imaging of alterations in epicuticular waxes during leaf development and in situ imaging during plant disease or exposure to environmental stressors. It is envisaged that this new analytical capability will enable in vivo studies of plants to provide insights into how the physiology of plants and crops respond to environmental stresses such as disease, soil contamination, drought, soil acidity, and climate change.
Correction for ‘Synchrotron macro ATR-FTIR microspectroscopy for high-resolution chemical mapping of single cells’ by Jitraporn Vongsvivut et al., Analyst, 2019, 144, 3226–3238, DOI: 10.1039/C8AN01543K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.