Pseudomonas syringae pv. phaseolicola is the causal agent of halo blight disease of beans (Phaseolus vulgaris L.), which is characterized by water-soaked lesions surrounded by a chlorotic halo resulting from the action of a non-host-specific toxin known as phaseolotoxin. This phytotoxin inhibits the enzyme ornithine carbamoyltransferase involved in arginine biosynthesis. Different evidence suggested that genes involved in phaseolotoxin production were clustered. Two genes had been previously identified in our laboratory within this cluster: argK, which is involved in the immunity of the bacterium to its own toxin, and amtA, which is involved in the synthesis of homoarginine. We sequenced the region around argK and amtA in P. syringae pv. phaseolicola NPS3121 to determine the limits of the putative phaseolotoxin gene cluster and to determine the transcriptional pattern of the genes comprising it. We report that the phaseolotoxin cluster (Pht cluster) is composed of 23 genes and is flanked by insertion sequences and transposases. The mutation of 14 of the genes within the cluster lead to a Tox ؊ phenotype for 11 of them, while three mutants exhibited low levels of toxin production. The analysis of fusions of selected DNA fragments to uidA, Northern probing, and reverse transcription-PCR indicate the presence of five transcriptional units, two monocistronic and three polycistronic; one is internal to a larger operon. The site for transcription initiation has been determined for each promoter, and the putative promoter regions were identified. Preliminary results also indicate that the gene product of phtL is involved in the regulation of the synthesis of phaseolotoxin.Pseudomonas syringae pv. phaseolicola is the causal agent of halo blight disease of beans (Phaseolus vulgaris L.), which is characterized by water-soaked lesions surrounded by a chlorotic halo (23). This halo results from the action of a non-hostspecific toxin known as phaseolotoxin [N ␦
Pseudomonas syringae pv. phaseolicola synthesizes a non-host-specific toxin, phaseolotoxin, and also synthesizes a phaseolotoxin-resistant ornithine carbamoyltransferase (ROCT) to protect itself from its own toxin. ROCT is encoded by argK, which is expressed coordinately with phaseolotoxin synthesis at 18°C. To investigate the regulatory mechanisms of this system, null mutants were constructed for argK, argF (encoding the phaseolotoxin-sensitive OCTase [SOCT]), and amtA (encoding an amidinotransferase involved in phaseolotoxin synthesis). The argF mutant did not exhibit arginine auxotrophy when grown in M9 medium at 28°C, because under this condition SOCT was replaced by ROCT. This loss of thermoregulation of argK was apparently caused by accumulation of carbamoylphosphate, one of the substrates of SOCT. Carbamoylphosphate, which has a structure similar to that of the inorganic moiety of phaseolotoxin, was used in induction assays with wild-type P. syringae pv. phaseolicola and was shown to be able to induce argK expression in M9 medium at 28°C. These results indicate that argK expression is independent of temperature and is regulated directly by a compound resembling the inorganic moiety of phaseolotoxin.
The physicochemical and physiological attributes of three contrasting commercial varieties of Musaceae, Dominico Harton (plantain), Guineo (cooking banana) and Gros Michel (dessert banana), were evaluated and statistically analysed during post-harvest ripening. Quality attributes differed markedly among varieties, both in fresh fruits and during ripening. Variety (V) had a significant effect (P < 0.001) on all attributes except total soluble solids (TSS), carotenes and total chlorophyll. Storage time (ST) had a significant effect on all attributes except colour parameter b* and total carotenes. Starch levels decreased significantly (P < 0.001) during ripening, with nearly complete hydrolysis in Gros Michel, followed by Guineo and Dominico Harton. Discriminant analysis showed that central diameter, TSS of the pulp, colour parameter a* and total starch had the highest weight in the differentiation among varieties. These results point out which parameters may help improve current methods for monitoring ripening of bananas, in particular the commercially important varieties in this study.
The complete genome sequence of a bipartite begomovirus (genus Begomovirus, family Geminiviridae) infecting yellow passion fruit (Passiflora edulis) in the state of Valle del Cauca (Colombia) has been determined. The complete DNA-A and DNA-B components were determined to be 2600 and 2572 nt in length, respectively. The DNA-A showed the highest nucleotide sequence identity (87.2 %) to bean dwarf mosaic virus (M88179), a begomovirus found in common bean crops in Colombia, and only 77.4 % identity to passion fruit severe leaf distortion virus (FJ972767), a begomovirus identified infecting passion fruit in Brazil. Based on its sequence identity to all other begomoviruses known to date and in accordance with the ICTV species demarcation criterion for the genus Begomovirus (≥91 % sequence identity for the complete DNA-A), the name passion fruit leaf distortion virus is proposed for this new begomovirus. To our knowledge, this is the first report of a bipartite begomovirus affecting passion fruit in Colombia and the second report of a geminivirus affecting this crop worldwide.
In Pseudomonas syringae pv. phaseolicola the enzyme ornithine carbamoyltransferase (OCTase), encoded by argF, is negatively regulated by argR, similar to what has been reported for Pseudomonas aeruginosa. However, production of the phaseolotoxin-resistant OCTase encoded by argK, synthesis of phaseolotoxin, and infectivity for bean pods occur independently of the ArgR protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.