The fluid-front dynamics resulting from the coexisting infiltration and evaporation phenomena in nanofluidic systems has been investigated. More precisely, water infiltration in both titania and silica mesoporous films was studied through a simple experiment: a sessile drop was deposited over the film and the advancement of the fluid front into the porous structure was optically followed and recorded in time. In the case of titania mesoporous films, capillary infiltration was arrested at a given distance, and a steady annular region of the wetted material was formed. A simple model that combines Lucas-Washburn infiltration and surface evaporation was derived, which appropriately describes the observed filling dynamics and the annulus width in dissimilar mesoporous morphologies. In the case of wormlike mesoporous morphologies, a remarkable phenomenon was found: instead of reaching a steady infiltration-evaporation balance, the fluid front exhibits an oscillating behavior. This complex filling dynamics opens interesting possibilities to study the unusual nanofluidic phenomena and to discover novel applications.
Nanofluidics based on nanoscopic porous structures has emerged as the next evolutionary milestone in the construction of versatile nanodevices with unprecedented applications. However, the straightforward development of nanofluidically interconnected systems is crucial for the production of practical devices. Here, we demonstrate that spontaneous infiltration into supramolecularly templated mesoporous oxide films at the edge of a sessile drop in open air can be used to connect pairs of landmarks. The liquids from the drops can then join through the nanoporous network to guide a localized chemical reaction at the nanofluid-front interface. This method, here named "open-pit" nanofluidics, allows mixing reagents from nanofluidically connected droplet reservoirs that can be used as reactors to conduct reactions and precipitation processes. From the fundamental point of view, the work contributes to unveiling subtle phenomena during spontaneous infiltration of fluids in bodies with nanoscale dimensions such as the front broadening effect and the oscillatory behavior of the infiltration-evaporation front. The approach has distinctive advantages such as easy fabrication, low cost, and facility of scaling up for future development of ultrasensitive detection, controlled nanomaterial synthesis, and novel patterning methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.